Re: Ploting a transformation of a set
- To: mathgroup at smc.vnet.net
- Subject: [mg123472] Re: Ploting a transformation of a set
- From: Barrie Stokes <Barrie.Stokes at newcastle.edu.au>
- Date: Thu, 8 Dec 2011 05:25:53 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <4EDCB5F0.813B.006A.0@newcastle.edu.au> <jbkj0l$i30$1@smc.vnet.net>
Hi Dan
As I suspected, the sky's the limit. This is very elegant, because the map is coded very explicitly in your approach.
Barrie
>>> On 07/12/2011 at 10:13 pm, in message <201112071113.GAA04114 at smc.vnet.net>, Dan
<dflatin at rcn.com> wrote:
> Here is another version of the grid approach, this time using grid
> lines conforming to the color function used in the thread above.
>
> Manipulate[
> Module[{g1,g2,map,opts,n=5,pp,ppm},
> g1[t_,k_]:=2{t+(k/n),-t};
> g2[t_,k_]:=2{t-(k/n),t};
> map=({x,y}\[Function]{(x+a y)^b,(a x+y)^b});
> opts=Sequence[PlotRange->{{0,2},{0,2}},
> Frame->True,Axes->False,
> ImageSize->200,ImagePadding->{{30,5},{20,5}}];
> pp[g_,kmin_,kmax_,color_]:=ParametricPlot[Table[g[t,k],
> {k,kmin,kmax}],{t,-5,5},
> PlotStyle->color,Evaluate@opts
> ];
> ppm[g_,kmin_,kmax_,color_]:=ParametricPlot[Table[map@@g[t,k],
> {k,kmin,kmax}],{t,-5,5},
> PlotStyle->color,Evaluate@opts
> ];
> Grid[{{
> Show[{pp[g1,0,2n,ColorData[1][1]],pp[g2,-n,n,ColorData[1][2]]}],
> Show[{ppm[g1,0,2n,ColorData[1][1]],ppm[g2,-n,n,ColorData[1]
> [2]]}]
> }}]
> ],
> {{a,0.5},0,1,0.05},
> {{b,0.5},0.1,1,0.05}
> ]