Re: NMinimize problem: fct minimized uses FindRoot
- To: mathgroup at smc.vnet.net
- Subject: [mg123562] Re: NMinimize problem: fct minimized uses FindRoot
- From: "Doug Tinkham" <dtinkham at live.ca>
- Date: Sun, 11 Dec 2011 03:47:45 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201112101227.HAA19219@smc.vnet.net> <op.v6afndnttgfoz2@bobbys-imac.local>
Thanks Bobby.
The function I showed with Sin and Cos is meaningless; it was just a
function that reproduced the recursion limit problem I was having. The
actual function would be several pages long, even after simplification.
Why never use Return? As a C++ programmer, it is a habit. I can't find
information saying why one should not. Is there a performance penalty?
Thanks.
--------------------------------------------------
From: "DrMajorBob"
> 1) Never, ever, EVER use Return. In this case, there wasn't even a flimsy
> excuse for it.
>
> 2) To prevent computing a function with symbolic arguments, use a pattern
> on the LHS such as _?NumericQ.
>
> 3) You used invalid syntax in the second argument of NMinimize.
>
> 4) Use Set, not SetDelayed, whenever possible.
>
> Clear[numFct]
> numFct[optvar_?NumericQ] :=
> Module[{inteq, n, x}, inteq[x_] = (Sin[x] + 1/2*Cos[x])/optvar;
> Sin[optvar] + n /. FindRoot[inteq[n], {n, 0.1}]]
>
> NMinimize[numFct[var], {var, 0, 6}]
>
> {-1.46365, {var -> 4.71239}}
>
> 5) Finding a root for (Sin[x] + 1/2*Cos[x])/optvar is the same as finding
> a root for Sin[x] + 1/2*Cos[x]:
>
> Clear[numFct]
> numFct[optvar_?NumericQ] :=
> Module[{inteq, n, x}, inteq[x_] = Sin[x] + 1/2*Cos[x];
> Sin[optvar] + n /. FindRoot[inteq[n], {n, 0.1}]]
>
> NMinimize[numFct[var], {var, 0, 6}]
>
> {-1.46365, {var -> 4.71239}}
>
> 6) Don't define functions you don't need:
>
> Clear[numFct]
> numFct[optvar_?NumericQ] := Module[{x},
> Sin[optvar] + x /. FindRoot[Sin[x] + Cos[x]/2, {x, 0.1}]]
> NMinimize[numFct[var], {var, 0, 6}]
>
> {-1.46365, {var -> 4.71239}}
>
> 7) Optimization and root-finding are uncoupled in this case, so:
>
> Clear[numFct]
> numFct[optvar_?NumericQ] := Sin[optvar] + Module[{x},
> x /. FindRoot[Sin[x] + Cos[x]/2, {x, 0.1}]]
> NMinimize[numFct[var], {var, 0, 6}]
>
> {-1.46365, {var -> 4.71239}}
>
> or
>
> Clear[numFct, x, y]
> numFct[x_?NumericQ] = Sin[x] +
> y /. FindRoot[Sin[y] + Cos[y]/2, {y, 0.1}];
> NMinimize[numFct[x], {x, 0, 6}]
>
> {-1.46365, {x -> 4.71239}}
>
> or even simpler:
>
> Clear[x]
> NMinimize[Sin[x], {x, 0, 6}]
> First@% + x /. FindRoot[Sin[x] + Cos[x]/2, {x, 0.1}]
>
> {-1., {x -> 4.71239}}
>
> -1.46365
>
> Bobby
>
> On Sat, 10 Dec 2011 06:27:05 -0600, Doug Tinkham <dtinkham at live.ca> wrote:
>
>> Hello
>>
>> I'm using NMinimize and FindMinimum to minimize a function that uses
>> FindRoot when calculating it's value. The problem is that the equation
>> that FindRoot is used on uses the variable that is being optimized, and
>> Mathematica appears to be forcing the variable that is being optimized
>> to remain symbolic in the FindRoot call, and this leads to recursion and
>> a recursion limit error.
>>
>> Rather than post my actual functions that are quite long, I've reduced
>> my problem to the code below that shows my issue. As you will see,
>> FindRoot keeps optvar in symbolic form when executing FindRoot. Is there
>> a way to force Mathematica to use all numerical calculations using
>> NMinimize or FindMinimum? Is the issue with calculation of the
>> gradient, which Mathematica wants to do symbolically?
>>
>> Many thanks.
>>
>>
>>
>> MyNumFct[optvar_] := Module[{inteq, n},
>> inteq[x_] := (Sin[x] + 1/2*Cos[x])/optvar;
>> n = n /. FindRoot[inteq[n], {n, 0.1}];
>> Return[n + Sin[optvar]];
>> ]
>> NMinimize[{MyNumFct[var], 0 <= var <= 6}, {var, 4.1}]
>>
>>
>
>
> --
> DrMajorBob at yahoo.com
>
- Follow-Ups:
- Re: NMinimize problem: fct minimized uses FindRoot
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: NMinimize problem: fct minimized uses FindRoot
- References:
- NMinimize problem: fct minimized uses FindRoot
- From: "Doug Tinkham" <dtinkham@live.ca>
- NMinimize problem: fct minimized uses FindRoot