high iteration trouble: new 3d IFS using Cuboids instead of Points
- To: mathgroup at smc.vnet.net
- Subject: [mg123667] high iteration trouble: new 3d IFS using Cuboids instead of Points
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Thu, 15 Dec 2011 04:53:04 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
I'm having some trouble getting this IFS to run a higher than
50000 iterations:
(*Fudge Flake pivot/overlap IFS 3d Fractal*)
(* by R. L. Bagula 14 Dec 2011 *)
Clear[f, dlst, pt, cr, ptlst]
dlst = Table[ Random[Integer, {1, 9}], {n, 50000}];
r = 1; q = Sqrt[2];
f[1, {x_, y_, z_}] =
N[{-y/Sqrt[3] - 1/2, x/Sqrt[3] - Sqrt[3]/2, z/r}]/q;
f[2, {x_, y_, z_}] =
N[{-y/Sqrt[3] - 1/2, x/Sqrt[3] + Sqrt[3]/2, z/r}]/q;
f[3, {x_, y_, z_}] = N[{-y/Sqrt[3] + 1, x/Sqrt[3], z/r}]/q;
(*x,z plane*)
f[4, {x_, y_, z_}] =
N[{-z/Sqrt[3] - 1/2, y/r, x/Sqrt[3] - Sqrt[3]/2}]/q;
f[5, {x_, y_, z_}] =
N[{-z/Sqrt[3] - 1/2, y/r, x/Sqrt[3] + Sqrt[3]/2}]/q;
f[6, {x_, y_, z_}] = N[{-z/Sqrt[3] + 1, y/r, x/Sqrt[3]}]/q;
(*y,z plane*)
f[7, {x_, y_, z_}] =
N[{x/r, -y/Sqrt[3] - 1/2, z/Sqrt[3] - Sqrt[3]/2}]/q;
f[8, {x_, y_, z_}] =
N[{x/r, -y/Sqrt[3] - 1/2, z/Sqrt[3] + Sqrt[3]/2}]/q;
f[9, {x_, y_, z_}] = N[{x/r, -y/Sqrt[3] + 1, z/Sqrt[3]}]/q;
pt = {0.5, 0.5, 0.5};
cr[n_] :=
Flatten[Table[
If[i == j == k == 1, {}, RGBColor[i, j, k]], {i, 0, 1, 0.5}, {j,
0, 1, 0.5}, {k, 0, 1, 0.5}]][[1 + Mod[n, 26]]];
ptlst = Table[{cr[dlst[[j]]], EdgeForm[],
Cuboid[pt = f[dlst[[j]], Sequence[pt]],
pt + {.005, .005, .005}]},
{j, Length[dlst]}];
g = Show[Graphics3D[ptlst], AspectRatio -> Automatic,
PlotRange -> All, Boxed -> False]
Sqrt[2]
Show[g, ViewPoint -> {-0.178, -0.172, 3.375}]
Show[g, ViewPoint -> {2.649, -2.104, 0.059}]
I'd also like some idea why this comes out a torus
instead of a space filling curve?
Roger Bagula