Re: AbsoluteOptions and NDSolve
- To: mathgroup at smc.vnet.net
- Subject: [mg123884] Re: AbsoluteOptions and NDSolve
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Tue, 27 Dec 2011 05:38:20 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201112262230.RAA20909@smc.vnet.net>
The output of NDSolve does not have options. Use StepMonitor
xList = Reap[nds = NDSolve[
{y'[x] == y[x] Cos[x + y[x]], y[0] == 1},
y, {x, 0, 30}, StepMonitor :> Sow[x]][[1]]][[2, 1]];
steps=Differences[xList];
Take[steps,10]
{0.00017069, 0.00034138, 0.00034138, 0.00034138, 0.0034138, \
0.0034138, 0.0034138, 0.0034138, 0.0227572, 0.0227572}
Bob Hanlon
On Mon, Dec 26, 2011 at 5:30 PM, Snark <gadior at gmail.com> wrote:
> Hi,
>
> I am perplexed by the behavior of AbsoluteOptions on NDSolve. I tried
> getting the actual value of StartingStepSize and got something weird.
>
> In[]:= AbsoluteOptions[NDSolve[eqSys, {c[x, t], T[x, t]}, {x, 0, xb},
> {t, 0,1}]],StartingStepSize]
> Out[]:= {{AbsoluteOptions[c[x,t]->InterpolatingFunction[{{0.,5.*10^-6},
> {0.,1.}},<>][x,t],StartingStepSize],AbsoluteOptions[T[x,t]-
>>InterpolatingFunction[{{0.,5.*10^-6},{0.,1.}},<>]
> [x,t],StartingStepSize]}}
>
> Isn't there a way to fetch absolute options from NDSolve?
>
> Thanks in advance
>
>
--
Bob Hanlon
- References:
- AbsoluteOptions and NDSolve
- From: Snark <gadior@gmail.com>
- AbsoluteOptions and NDSolve