FullSimplify successive transforms
- To: mathgroup at smc.vnet.net
 - Subject: [mg117491] FullSimplify successive transforms
 - From: Arturas.Acus at tfai.vu.lt
 - Date: Sun, 20 Mar 2011 04:55:00 -0500 (EST)
 
Dear Group,
How to extract successful transformations of FullSimplify?
In particulary I am interesting what rules were used to transform  
BesselI[ ] functions into BesselJ/BesselK in the example below. Of  
course, learning the general method to detect sequence of these  
transforms would be of great value.
all\[Psi]MathematicaSimplified={(2 k1 Sqrt[2/\[Pi]] \[Kappa]2  
BesselJ[n,k1 \[Rho]] BesselK[n,a \[Kappa]2] Sin[n \[Pi]])/(\[Sqrt](2 a  
k1^2 \[Pi] \[Kappa]2 BesselI[n,a \[Kappa]2] (n (BesselI[1-n,a  
\[Kappa]2]+BesselI[-1+n,a \[Kappa]2]) BesselJ[n,a k1]^2+a \[Kappa]2  
BesselI[-n,a \[Kappa]2] BesselJ[-1+n,a k1] BesselJ[1+n,a k1])+\[Pi]  
BesselI[n,a \[Kappa]2]^2 (2 a k1 n \[Kappa]2^2 BesselJ[-1+n,a k1]  
BesselJ[n,a k1]-4 n^2 (k1^2+\[Kappa]2^2) BesselJ[n,a k1]^2+a^2 k1^2  
\[Kappa]2^2 BesselJ[1+n,a k1]^2)+a k1^2 \[Kappa]2 (a \[Pi] \[Kappa]2  
((BesselI[1-n,a \[Kappa]2]^2-2 BesselI[1-n,a \[Kappa]2] BesselI[-1+n,a  
\[Kappa]2]+BesselI[1+n,a \[Kappa]2]^2) BesselJ[n,a k1]^2-BesselI[-n,a  
\[Kappa]2]^2 BesselJ[-1+n,a k1] BesselJ[1+n,a k1])+4 n BesselI[-n,a  
\[Kappa]2] BesselJ[n,a k1]^2 BesselK[-1+n,a \[Kappa]2] Sin[n  
\[Pi]]))),(2 k1 Sqrt[2/\[Pi]] \[Kappa]2 BesselJ[n,a k1]  
BesselK[n,\[Kappa]2 \[Rho]] Sin[n \[Pi]])/(\[Sqrt](2 a k1^2 \[Pi]  
\[Kappa]2 BesselI[n,a \[Kappa]2] (n (BesselI[1-n,a  
\[Kappa]2]+BesselI[-1+n,a \[Kappa]2]) BesselJ[n,a k1]^2+a \[Kappa]2  
BesselI[-n,a \[Kappa]2] BesselJ[-1+n,a k1] BesselJ[1+n,a k1])+\[Pi]  
BesselI[n,a \[Kappa]2]^2 (2 a k1 n \[Kappa]2^2 BesselJ[-1+n,a k1]  
BesselJ[n,a k1]-4 n^2 (k1^2+\[Kappa]2^2) BesselJ[n,a k1]^2+a^2 k1^2  
\[Kappa]2^2 BesselJ[1+n,a k1]^2)+a k1^2 \[Kappa]2 (a \[Pi] \[Kappa]2  
((BesselI[1-n,a \[Kappa]2]^2-2 BesselI[1-n,a \[Kappa]2] BesselI[-1+n,a  
\[Kappa]2]+BesselI[1+n,a \[Kappa]2]^2) BesselJ[n,a k1]^2-BesselI[-n,a  
\[Kappa]2]^2 BesselJ[-1+n,a k1] BesselJ[1+n,a k1])+4 n BesselI[-n,a  
\[Kappa]2] BesselJ[n,a k1]^2 BesselK[-1+n,a \[Kappa]2] Sin[n \[Pi]])))}
all\[Psi]MathematicaSimplifiedNoHyper=Assuming[a>0&&\[Kappa]2>0&&k1>0&&n>0,FullSimplify[all\[Psi]MathematicaSimplified,ComplexityFunction->(10000*Count[#,_BesselI|_Hypergeometric0F1Regularized|_Hypergeometric0F1,{0,Infinity}]+LeafCount[#]&)]]
Sincerely, Arturas Acus