Re: Expected value of the Geometric distribution
- To: mathgroup at smc.vnet.net
- Subject: [mg118614] Re: Expected value of the Geometric distribution
- From: Andy Ross <andyr at wolfram.com>
- Date: Wed, 4 May 2011 06:35:50 -0400 (EDT)
On 5/3/2011 7:22 AM, Tonja Krueger wrote:
> Dear everybody,
> Thank you all for your kind help. But I'm still stuck trying to find the expected value for a continuous distribution like the Gumbel distribution or GEV, Weibull.
> Moment[GumbelDistribution[\[Alpha], \[Beta]], 1]
> gives this as result:
> \[Alpha] - EulerGamma \[Beta]
> But when I try using
> Integrate[ E^(-E^(-((x - \[Mu])/\[Beta])) - (x - \[Mu])/\[Beta])/\[Beta]* x, {x, -\[Infinity], \[Infinity]}]
> This is what I get:
> ConditionalExpression[\[Beta] (EulerGamma + Log[E^(\[Mu]/\[Beta])] - E^-E^((\[Mu]/\[Beta])) Log[E^(-(\[Mu]/\[Beta]))] + Log[E^(\[Mu]/\[Beta])])), Re[\[Beta]]> 0]
> I am stumped.
> Tonja
> ___________________________________________________________
> Schon geh=C3=B6rt? WEB.DE hat einen genialen Phishing-Filter in die
> Toolbar eingebaut! http://produkte.web.de/go/toolbar
>
If you Integrate with the assumptions of the distribution you should get
what you are expecting...
Integrate[(E^(-E^((x - \[Alpha])/\[Beta]) + (x -
\[Alpha])/\[Beta])*x)/\[Beta],{x,-\[Infinity],\[Infinity]},Assumptions->DistributionParameterAssumptions[GumbelDistribution[\[Alpha],\[Beta]]]]
-Andy