Re: Domain of a function

• To: mathgroup at smc.vnet.net
• Subject: [mg122857] Re: Domain of a function
• From: Peter Pein <petsie at dordos.net>
• Date: Sat, 12 Nov 2011 07:36:22 -0500 (EST)
• Delivered-to: l-mathgroup@mail-archive0.wolfram.com
• References: <j9b6lb\$4sv\$1@smc.vnet.net>

```Am 08.11.2011 13:17, schrieb Tutor:
> Hallo!
>
> How can I find the domain of a function?
>
> something like this: ForAll[Element[f,Reals]] and it should return
> something like this: x element ]-2,oo[
>
> I have NO idea, how this can be done for a function f...
>

With a little luck, Reduce can do this:

In[20]:= Reduce[Element[x | Sqrt[2 + x], Reals], x]
Out[20]= x >= -2
In[21]:= Reduce[Element[x | Sqrt[1/2 + Sin[x]], Reals, x, Reals]
Out[21]= (Element[C[1], Integers] && (x == -Pi/6 + 2 Pi C[1] || x== 7
Pi/6 + 2 Pi C[1])) ||
(Element[C[1], Integers] && 1/6 (-Pi + 12 Pi C[1]) < x < 1/6 (7 Pi +
12  Pi C[1]))

```

• Prev by Date: Re: Pattern to match element in nested list
• Next by Date: Re: Pattern to match element in nested list
• Previous by thread: Domain of a function
• Next by thread: Re: Domain of a function