minimization a matrix
- To: mathgroup at smc.vnet.net
- Subject: [mg123020] minimization a matrix
- From: Herman <btta2010 at gmail.com>
- Date: Mon, 21 Nov 2011 04:24:56 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
I have a problem in minimization of the given matrix
\[Sigma]M[\[Rho]_, \[Phi]_] :=
Cosh[2 \[Rho]]/
2 ({{1 + Tanh[2 \[Rho]] Cos[\[Phi]], -Tanh [
2 \[Rho]] Sin[\[Phi]] }, {-Tanh [2 \[Rho]] Sin[\[Phi]],
1 - Tanh[2 \[Rho]] Cos[\[Phi]]}})
\[Tau][\[Alpha]_, \[Omega]0_, t_, r_, \[Rho]_, \[Phi]_] :=
Det[At[\[Alpha], \[Omega]0, t, r] -
Ct[\[Alpha], \[Omega]0, t, r]
Inverse[(At[\[Alpha], \[Omega]0, t,
r] + \[Sigma]M[\[Rho], \[Phi]])]
Ct[\[Alpha], \[Omega]0, t, r]\[Transpose]]
where , \[Rho] >= 0, 0 <= \[Phi] <= 2 \[Pi]}, {\[Rho], \[Phi]}] where as At & Ct are depend on real number constants. I would highly appreciate it if you could write me any comments on how to minimize the the determinat of the matrixa \tau