Tensor Products with Derivatives in Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg121921] Tensor Products with Derivatives in Mathematica
- From: Thomas Markovich <thomasmarkovich at gmail.com>
- Date: Thu, 6 Oct 2011 04:26:05 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Hi,
I would like to take the tensor product of two gradient operators so
that I can construct a matrix "derivative."
This is to say that I want to do the following
\begin{pmatrix}
\partial_x \\
\partial_y \\
\partial_z
\end{pmatrix}
\begin{pmatrix}
\partial_x & \partial_y & \partial_z
\end{pmatrix}
= \begin{pmatrix}
\partial^2_{x,x} & \partial^2_{x,y} & \partial^2_{x,z} \\
\partial^2_{y,x} & \partial^2_{y,y} & \partial^2_{y,z} \\
\partial^2_{z,x} &\partial^2_{z,y} & \partial^2_{z,z}
\end{pmatrix}
and I have tried to do
Qt = ( {
{(=E2=80=98=E2=84=A2
=CB=9CSubscriptBox[=E2=84=A2=E2=88=82, =E2=84=A2x]# + W11), (=E2=80=98=E2=84=A2
=CB=9CSubscriptBox[=E2=84=A2=E2=88=82, =E2=84=A2y]# + W12)}
} ) &;
Q = ( {
{(=E2=80=98=E2=84=A2
=CB=9CSubscriptBox[=E2=84=A2=E2=88=82, =E2=84=A2x]# + W11)},
{(=E2=80=98=E2=84=A2
=CB=9CSubscriptBox[=E2=84=A2=E2=88=82, =E2=84=A2y]# + W12)}
} ) &;
Qt@Q
But this appears not to work. Any ideas?
Thomas