Re: Integral points on elliptic curves
- To: mathgroup at smc.vnet.net
- Subject: [mg122434] Re: Integral points on elliptic curves
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Fri, 28 Oct 2011 05:36:27 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <j80q8p$adb$1@smc.vnet.net> <j862sg$5v7$1@smc.vnet.net> <201110262140.RAA00128@smc.vnet.net>
On 26 Oct 2011, at 23:40, Costa Bravo wrote:
> Emu write:
>>>
>>> FindInstance[y^3 - x^2 == 1641843, {x, y}, Integers]
>>>
>>> if FindInstance doesn't work what inspite???
>>>
>
>> How about something as naive as
>>
>> In[31]:= Cases[Join @@ Table[{x, y, y^3 - x^2 == 1641843}, {x, 1,
>> 1000}, {y, 1, 1000}], {__, True}]
>> Out[31]= {{468, 123, True}}
>
> In[51]:= AbsoluteTiming[
> Cases[Join @@ Table[{x, y, y^3 - x^2 == 1641843}, {x, 1, 1000}, {y, 1,
> 1000}], {__, True}]]
>
> Out[51]= {4.6718750, {{468, 123, True}}}
>
> better
>
> In[60]:= k = 1641843;
> AbsoluteTiming[y0 = Ceiling[k^(1/3)];
> Do[If[FractionalPart[Sqrt[y^3 - k]] == 0,Print[Sqrt[y^3 - k], " ", y]], {y, y0, 10000}]]
>
> 468 123
> 11754 519
>
> Out[61]= {3.4375000, Null}
>
> --
> Costa
>
This is hardly impressive when compared with:
Solve[y^3 - x^2 == 1641843 && 0 < x && 0 < y < 10^3, {x, y},
Integers] // Timing
{0.383947,{{x->468,y->123},{x->11754,y->519}}}
Andrzej Kozlowski
- References:
- Re: Integral points on elliptic curves
- From: Costa Bravo <q13a27tt@aol.com>
- Re: Integral points on elliptic curves