Re: Linear combination of Bessel functions
- To: mathgroup at smc.vnet.net
- Subject: [mg121400] Re: Linear combination of Bessel functions
- From: Leonid Shifrin <lshifr at gmail.com>
- Date: Wed, 14 Sep 2011 05:12:30 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201109131122.HAA05158@smc.vnet.net>
Here is one way: getBesselCoeff[n_, expr_] := Module[{x}, SeriesCoefficient[(expr /. BesselJ[n, _] :> (1/x))*x, {x, 0, 0}]]; So that In[1503]:= expr = r^2+Cos[r] BesselJ[0,rho r]+3 Sin[r] BesselJ[1,rho r]+Log[r]BesselJ[2,rho r]; getBesselCoeff[#,expr]&/@{0,1,2} Out[1504]= {Cos[r],3 Sin[r],Log[r]} Regards, Leonid On Tue, Sep 13, 2011 at 3:22 PM, Sam Takoy <sam.takoy at yahoo.com> wrote: > Hi, > > Suppose I have an expression that's a linear combination of Bessel > function. Kind of like this > > r^2 + Cos[r] BesselJ[0, rho r] + 3 Sin[r] BesselJ[1, rho r] + Log[r] > BesselJ[2, rho r] > > Is there a way to extract the coefficients of the linear combination? > > Thanks, > > Sam > >
- References:
- Linear combination of Bessel functions
- From: Sam Takoy <sam.takoy@yahoo.com>
- Linear combination of Bessel functions