Re: Table->Value
- To: mathgroup at smc.vnet.net
- Subject: [mg121425] Re: Table->Value
- From: Tomas Garza <tgarza10 at msn.com>
- Date: Thu, 15 Sep 2011 04:36:53 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201109140915.FAA15997@smc.vnet.net>
Perhaps this will help to understand the rules: In[1]:= sols={{{V->26.5173},{V->340.686},{V->191821.}},{{V->26.6798},{V->326.358},{V->135843.}},{{V->26.8489},{V->312.824},{V->98061.}},{{V->27.0252},{V->300.031},{V->72039.1}},{{V->27.209},{V->287.932},{V->53792.5}},{{V->27.4009},{V->276.484},{V->40774.4}},{{V->27.6013},{V->265.647},{V->31339.2}},{{V->27.8109},{V->255.384},{V->24398.6}},{{V->28.0302},{V->245.661},{V->19221.5}},{{V->28.26},{V->236.446},{V->15312.4}},{{V->28.501},{V->227.71},{V->12322. 2}},{{V->28.754},{V->219.424},{V->10009.8}}}; In[2]:= lst=Flatten[sols] Out[2]= {V->26.5173,V->340.686,V->191821.,V->26.6798,V->326.358,V->135843.,V->26.8489,V->312.824,V->98061.,V->27.0252,V->300.031,V->72039.1,V->27.209,V->287.932,V->53792.5,V->27.4009,V->276.484,V->40774.4,V->27.6013,V->265.647,V->31339.2,V->27.8109,V->255.384,V->24398.6,V->28.0302,V->245.661,V->19221.5,V->28.26,V->236.446,V->15312.4,V->28.501,V->227.71,V->12322.2,V->28.754,V->219.424,V->10009.8} In[3]:= Partition[Table[lst[[j,2]],{j,1,Length[lst]}],3] Out[3]= {{26.5173,340.686,191821.},{26.6798,326.358,135843.},{26.8489,312.824,98061.},{27.0252,300.031,72039.1},{27.209,287.932,53792.5},{27.4009,276.484,40774.4},{27.6013,265.647,31339.2},{27.8109,255.384,24398.6},{28.0302,245.661,19221.5},{28.26,236.446,15312.4},{28.501,227.71,12322.2},{28.754,219.424,10009.8}} These are the solutions triplets. -Tomas > Date: Wed, 14 Sep 2011 05:15:23 -0400 > From: mariano.pierantozzi at gmail.com > Subject: Table->Value > To: mathgroup at smc.vnet.net > > Hi to everyone, > I've got a problem that seem stupid, but is a lost of time to me. > I've generate a table with solutions of a series of equations > pfugacita = > v = Table[ > NSolve[pressioni[[1, i]] - (R temperature[[1, i]])/( > V - b[[1, i]]) + > a[[1, i]]/( - (b[[1, i]])^2 + 2 b[[1, i]] V + V^2) == 0, V, > Reals], {i, 41}] // Grid > The solutions are a table and in each row i've got the three solutions of > one equation. > The results are > ............. > { > {{V -> 26.5173}, {V -> 340.686}, {V -> 191821.}}, > {{V -> 26.6798}, {V -> 326.358}, {V -> 135843.}}, > {{V -> 26.8489}, {V -> 312.824}, {V -> 98061.}}, > {{V -> 27.0252}, {V -> 300.031}, {V -> 72039.1}}, > {{V -> 27.209}, {V -> 287.932}, {V -> 53792.5}}, > {{V -> 27.4009}, {V -> 276.484}, {V -> 40774.4}}, > {{V -> 27.6013}, {V -> 265.647}, {V -> 31339.2}}, > {{V -> 27.8109}, {V -> 255.384}, {V -> 24398.6}}, > {{V -> 28.0302}, {V -> 245.661}, {V -> 19221.5}}, > {{V -> 28.26}, {V -> 236.446}, {V -> 15312.4}}, > {{V -> 28.501}, {V -> 227.71}, {V -> 12322.2}}, > {{V -> 28.754}, {V -> 219.424}, {V -> 10009.8}} > } > ........... > And now i want to use this values to calculate some variations; but i don't > know how trasform the table of solutions in a table of pure number. > i.e. > {{ 26.5173}, { 340.686}, { 191821.}}, > { 26.6798}, { 326.358}, { 135843.}}, > {{ 26.8489}, {312.824}, {98061.}}, > {{ 27.0252}, { 300.031}, { 72039.1}}, > {{27.209}, {287.932}, { 53792.5}}, > { 27.4009}, 276.484}, {40774.4}}, > {{27.6013}, {265.647}, { 31339.2}}, > {{27.8109}, { 255.384}, { 24398.6}}, > {{ 28.0302}, 245.661}, { 19221.5}}, > {{28.26}, {236.446}, {15312.4}}, > {{ 28.501}, { 227.71}, {12322.2}}, > {{ 28.754}, {219.424}, { 10009.8}} > } > If I had one equations it's non problem for me, but i don't be able with a > table. > Thaks for yuor help... > MP
- References:
- Table->Value
- From: Mariano Pierantozzi <mariano.pierantozzi@gmail.com>
- Table->Value