 
 
 
 
 
 
Re: 1-liner wanted
- To: mathgroup at smc.vnet.net
- Subject: [mg121671] Re: 1-liner wanted
- From: Ulrich Arndt <ulrich.arndt at data2knowledge.de>
- Date: Sat, 24 Sep 2011 22:35:42 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201109230743.DAA07699@smc.vnet.net>
Depends on what you want this might work
1. only one result set is of interest
pat = {{_Integer, _Integer, _Integer} ...,
   x : {a_Integer, b_Integer,
     x1_Integer}, {_Integer, _Integer, _Integer} ...,
   y : {b_Integer, c_Integer,
     x2_Integer}, {_Integer, _Integer, _Integer} ...,
   z : {a_Integer, c_Integer,
     x3_Integer}, {_Integer, _Integer, _Integer} ...};
givenList = {{1, 2, 3}, {2, 4, 5}, {6, 7, 8}, {1, 4, 6}, {7, 8,
    9}, {11, 12, 13}, {6, 8, 9}};
givenList /. pat -> {x, y, z}
2. all which match the pattern are of interest
patshort = {{a_Integer, b_Integer, _Integer}, {b_Integer,
   c_Integer, _Integer}, {a_Integer, c_Integer, _Integer}};
Extract[KSubsets[givenList, 3],
 Position[Map[MatchQ[#, patshort] &, KSubsets[givenList, 3]], True]]
Ulrich
--
www.data2knowledge.de
Am 23.09.2011 um 09:43 schrieb Kent Holing:
> Let's assume we have a list of elements of the type {x,y,z} for x, y 
and z integers. And, if needed we assume x < y < z. We also assume that 
the list contains at least 3 such triples.
>
> Can Mathematica easily solve the following problem? To detect at least 
three elements from the list of the type {a,b,.}, {b,c,.} and {a,c,.}? I 
am more intereseted in an elegant 1-liner than computational efficient 
solutions.
>
> Example:
> Givenlist ={1,2,3},{2,4,5],{6,7,8},{1,4,6},{7,8,9},{11,12,13}};
> should return
> {{1,2,3},{2,4,5},{1,4,6}}
>
> Kent Holing,
> Norway
>
- References:
- 1-liner wanted
- From: Kent Holing <KHO@statoil.com>
 
 
- 1-liner wanted

