Elementwise Matrix Subtraction
- To: mathgroup at smc.vnet.net
- Subject: [mg121667] Elementwise Matrix Subtraction
- From: velvetfish1 at hotmail.com
- Date: Sat, 24 Sep 2011 22:34:57 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
I am trying to do a simple element-wise matrix subtraction to obtain the Laplacian Matrix of a Graph, by doing an element wise subtraction of the adjacency matrix, using AdjacenyMatrix[] from the incidence matrix derived from input using DiagonalMatrix[] that I am using as a simple check to understand more complex matrices have been properly specified. This should give the same result as KirchhoffMatrix[]. However, I get a behavior I don't quite understand. Rather than seeing the evaluated result of the element-wise subtraction instead I see, when visualizing in //MatrixForm the difference of the two matrices each shown in MatrixForm but symbolically specified as the difference two separate matrices, rather than as a single matrix with the subtraction evaluated. I've tried doing the subtraction either in a map or only by using the Subtraction[] function. It seems that in either case the kernel is not evaluating the subtraction, but I can not figure out why. There is no HoldOn[] being specified as far as I know, but am unsure how to tell, not having specified one. The code is as follows: examplegraph = Graph[{1 \[UndirectedEdge] 2, 2 \[UndirectedEdge] 3, 3 \[UndirectedEdge] 4, 4 \[UndirectedEdge] 5, 4 \[UndirectedEdge] 6, 1 \[UndirectedEdge] 5, 2 \[UndirectedEdge] 5}, {VertexLabels -> "Name"}, {ImagePadding -> 10}] km1 = KirchhoffMatrix[examplegraph] // MatrixForm am = AdjacencyMatrix[examplegraph] // MatrixForm im = DiagonalMatrix[{2, 3, 2, 3, 3, 1}] // MatrixForm km2 = MatrixForm /@ {im - am} km3 = Subtract[dm, am] km2 // MatrixForm km3 // MatrixForm Thus the output looks like: \!\(\* TagBox[ RowBox[{ TagBox[ RowBox[{"(", "", GridBox[{ {"2", "0", "0", "0", "0", "0"}, {"0", "3", "0", "0", "0", "0"}, {"0", "0", "2", "0", "0", "0"}, {"0", "0", "0", "3", "0", "0"}, {"0", "0", "0", "0", "3", "0"}, {"0", "0", "0", "0", "0", "1"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]], "-", TagBox[ RowBox[{"(", "", GridBox[{ {"0", "1", "0", "0", "1", "0"}, {"1", "0", "1", "0", "1", "0"}, {"0", "1", "0", "1", "0", "0"}, {"0", "0", "1", "0", "1", "1"}, {"1", "1", "0", "1", "0", "0"}, {"0", "0", "0", "1", "0", "0"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {6, 6}, 0, { 1, {{0, 2, 5, 7, 10, 13, 14}, {{2}, {5}, {1}, {3}, {5}, {2}, { 4}, {3}, {5}, {6}, {4}, {1}, {2}, {4}}}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}]]]]}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]\) Rather than: \!\(\* TagBox[ RowBox[{"(", "", GridBox[{ {"2", RowBox[{"-", "1"}], "0", "0", RowBox[{"-", "1"}], "0"}, { RowBox[{"-", "1"}], "3", RowBox[{"-", "1"}], "0", RowBox[{"-", "1"}], "0"}, {"0", RowBox[{"-", "1"}], "2", RowBox[{"-", "1"}], "0", "0"}, {"0", "0", RowBox[{"-", "1"}], "3", RowBox[{"-", "1"}], RowBox[{"-", "1"}]}, { RowBox[{"-", "1"}], RowBox[{"-", "1"}], "0", RowBox[{"-", "1"}], "3", "0"}, {"0", "0", "0", RowBox[{"-", "1"}], "0", "1"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "", ")"}], Function[BoxForm`e$, MatrixForm[ SparseArray[ Automatic, {6, 6}, 0, { 1, {{0, 3, 7, 10, 14, 18, 20}, {{1}, {2}, {5}, {2}, {1}, {3}, { 5}, {3}, {2}, {4}, {4}, {3}, {5}, {6}, {5}, {4}, {1}, {2}, { 6}, {4}}}, {2, -1, -1, 3, -1, -1, -1, 2, -1, -1, 3, -1, -1, -1, 3, -1, -1, -1, 1, -1}}]]]]\) As I would expect. Does anyone have an idea why the evaluation does not take place, even when it is explicitly evaluated? Could this have something to do with "automatic" display or evaluation when a Sparce Array is being created implicitly? Thanks in advance for any help, someone might kindly provide.
- Follow-Ups:
- Re: Elementwise Matrix Subtraction
- From: Murray Eisenberg <murray@math.umass.edu>
- Re: Elementwise Matrix Subtraction