Electric potential and interface @y=0
- To: mathgroup at smc.vnet.net
- Subject: [mg127558] Electric potential and interface @y=0
- From: "Mat' G\." <ellocomateo at free.fr>
- Date: Sat, 4 Aug 2012 06:00:26 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
Hello, Given a list of charges and their position of the form {{q1,{x1,y1}},{q2,{x3,y3}},...,{qn,{xn,yn}}} and a dielectric interface such that the dielectric constant is \epsilon_A for y>0 is \epsilon_B for y<=0 How can I compute the electric potential everywhere? I need to get an expression which is derivable to then compute the electric field. I have an expression for an interface along x=0 (instead of y=0), but I fail at adapting it for my case: \!\( \*UnderoverscriptBox[\(\[Sum]\), \(i = 1\), \(n\)]\(( \*FractionBox[\((1 - \*FractionBox[\(x\ charges[\([\)\(i, 2, 1\)\(]\)]\), SqrtBox[ SuperscriptBox[\((x\ charges[\([\)\(i, 2, 1\)\(]\)])\), \(2\)]]])\), \(2\)]\ \(( \*FractionBox[\(2\ charges[\([\)\(i, 1\)\(]\)]\), \(4 \[Pi]\ \(( \*SubscriptBox[\(\[Epsilon]\), \(water\)] + \*SubscriptBox[\(\[Epsilon]\), \(air\)])\) \*SqrtBox[\( \*SuperscriptBox[\((x - charges[\([\)\(i, 2, 1\)\(]\)])\), \(2\)] + \*SuperscriptBox[\((y - charges[\([\)\(i, 2, 2\)\(]\)])\), \(2\)]\)]\)]\ )\) + \(( \*FractionBox[\(1 + \*FractionBox[\(x\ charges[\([\)\(i, 2, 1\)\(]\)]\), SqrtBox[ SuperscriptBox[\((x\ charges[\([\)\(i, 2, 1\)\(]\)])\), \(2\)]]]\), \(2\)])\) \*FractionBox[\(charges[\([\)\(i, 1\)\(]\)]\), \(4\ \[Pi]\)]\ \((\(( \*FractionBox[\(1 - \*FractionBox[\(x\), SqrtBox[ SuperscriptBox[\((x)\), \(2\)]]]\), \(2 \*SubscriptBox[\(\[Epsilon]\), \(air\)]\)])\) \(( \*FractionBox[\(1\), SqrtBox[\( \*SuperscriptBox[\((x - charges[\([\)\(i, 2, 1\)\(]\)])\), \(2\)] + \*SuperscriptBox[\((y - charges[\([\)\(i, 2, 2\)\(]\)])\), \(2\)]\)]] - \(( \*FractionBox[\( \*SubscriptBox[\(\[Epsilon]\), \(water\)] - \*SubscriptBox[\(\[Epsilon]\), \(air\)]\), \(\(( \*SubscriptBox[\(\[Epsilon]\), \(water\)] + \*SubscriptBox[\(\[Epsilon]\), \(air\)])\) \*SqrtBox[\( \*SuperscriptBox[\((x + charges[\([\)\(i, 2, 1\)\(]\)])\), \(2\)] + \*SuperscriptBox[\((y - charges[\([\)\(i, 2, 2\)\(]\)])\), \(2\)]\)]\)])\))\) + \ \(( \*FractionBox[\(1 + \*FractionBox[\(x\), SqrtBox[ SuperscriptBox[\((x)\), \(2\)]]]\), \(2 \*SubscriptBox[\(\[Epsilon]\), \(water\)]\)])\) \(( \*FractionBox[\(1\), SqrtBox[\( \*SuperscriptBox[\((x - charges[\([\)\(i, 2, 1\)\(]\)])\), \(2\)] + \*SuperscriptBox[\((y - charges[\([\)\(i, 2, 2\)\(]\)])\), \(2\)]\)]] - \(( \*FractionBox[\( \*SubscriptBox[\(\[Epsilon]\), \(air\)] - \*SubscriptBox[\(\[Epsilon]\), \(water\)]\), \(\(( \*SubscriptBox[\(\[Epsilon]\), \(water\)] + \*SubscriptBox[\(\[Epsilon]\), \(air\)])\) \*SqrtBox[\( \*SuperscriptBox[\((x + charges[\([\)\(i, 2, 1\)\(]\)])\), \(2\)] + \*SuperscriptBox[\((y - charges[\([\)\(i, 2, 2\)\(]\)])\), \(2\)]\)]\)])\))\))\))\)\); Thanks for helping!