Re: Ambiguity of "Plot"
- To: mathgroup at smc.vnet.net
- Subject: [mg127806] Re: Ambiguity of "Plot"
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Thu, 23 Aug 2012 20:48:54 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20120823065423.92A8A6844@smc.vnet.net>
Clear[f, \[Alpha], \[Rho], \[Delta]] f[\[Alpha]_, \[Rho]_, \[Delta]_] = (\[Rho] + \[Delta] - \[Delta] \[Alpha] - Sqrt[\[Delta] \[Rho] \[Alpha] (1 - \[Alpha]) + \[Rho]^2 \ \[Alpha]])/ ((\[Rho] + \[Delta]) (1 - \[Alpha])) // Simplify; Assuming[{\[Rho] > 0}, Limit[f[\[Alpha], \[Rho], \[Delta]], \[Alpha] -> 1]] 1/2 Series[f[\[Alpha], \[Rho], \[Delta]], {\[Alpha], 1, 0}] // Simplify[#, {\[Rho] > 0}] & // Normal 1/2 f[\[Alpha], \[Rho], 0] // Simplify[#, {\[Rho] > 0}] & 1/(1 + Sqrt[\[Alpha]]) % /. \[Alpha] -> 1 1/2 f[\[Alpha], 0, \[Delta]] 1 Manipulate[ Column[{ Plot[f[\[Alpha], \[Rho], \[Delta]], {\[Alpha], 0, 1}, PlotRange -> {0, 1}, AxesLabel -> {"\[Alpha]", "f"}, ImageSize -> 300], Plot3D[ f[\[Alpha], \[Rho]1, \[Delta]], {\[Alpha], 0, 1}, {\[Rho]1, 0.001, 1}, PlotRange -> {0, 1}, AxesLabel -> {"\n\[Alpha]", "\n \[Rho]", "f "}, ImageSize -> 300], Plot3D[ f[\[Alpha], \[Rho], \[Delta]1], {\[Alpha], 0, 1}, {\[Delta]1, 0, .5}, PlotRange -> {0, 1}, AxesLabel -> {"\n\[Alpha]", " \[Delta]", "f "}, ImageSize -> 300]}], {\[Rho], 0.001, 1, Appearance -> "Labeled"}, {\[Delta], 0, .5, Appearance -> "Labeled"}] Bob Hanlon On Thu, Aug 23, 2012 at 2:54 AM, <JikaiRF at aol.com> wrote: > Dear members; > > I have been embarrassed about a function Plot. > I would like to plot a curve defined as follows: > > f(\[Alpha]) = (\[Rho] + \[Delta] - \[Delta] \[Alpha] - Sqrt[\[Delta] \[Rho] \ > \[Alpha] (1 - \[Alpha]) + \[Rho]^2 \[Alpha]])/((\[Rho] + \[Delta]) (1 \ > - \[Alpha])). > Here, 0 < \[Alpha] < 1. > > And I programmed in this way; > Plot[f(\[Alpha]), { \[Alpha], 0 < \[Alpha] < 1}] > > The curve I obtained from Mathematica is monotonously decreasing. AS a result, f(1) =0. > However, by using l'H=F4pital7 theorem, f(1) = 1/2 is correct. > In this situation, I would like to obtain an accurate curve. > > Sincerely, > Fujio Takata > Kobe University, Japan. > I use Mathematica 8.040, Macintosh version. > >
- References:
- Ambiguity of "Plot"
- From: JikaiRF@aol.com
- Ambiguity of "Plot"