Re: Ambiguity of "Plot"
- To: mathgroup at smc.vnet.net
- Subject: [mg127806] Re: Ambiguity of "Plot"
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Thu, 23 Aug 2012 20:48:54 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20120823065423.92A8A6844@smc.vnet.net>
Clear[f, \[Alpha], \[Rho], \[Delta]]
f[\[Alpha]_, \[Rho]_, \[Delta]_] =
(\[Rho] + \[Delta] - \[Delta] \[Alpha] -
Sqrt[\[Delta] \[Rho] \[Alpha] (1 - \[Alpha]) + \[Rho]^2 \
\[Alpha]])/
((\[Rho] + \[Delta]) (1 - \[Alpha])) // Simplify;
Assuming[{\[Rho] > 0},
Limit[f[\[Alpha], \[Rho], \[Delta]], \[Alpha] -> 1]]
1/2
Series[f[\[Alpha], \[Rho], \[Delta]], {\[Alpha], 1, 0}] //
Simplify[#, {\[Rho] > 0}] & // Normal
1/2
f[\[Alpha], \[Rho], 0] // Simplify[#, {\[Rho] > 0}] &
1/(1 + Sqrt[\[Alpha]])
% /. \[Alpha] -> 1
1/2
f[\[Alpha], 0, \[Delta]]
1
Manipulate[
Column[{
Plot[f[\[Alpha], \[Rho], \[Delta]], {\[Alpha], 0, 1},
PlotRange -> {0, 1},
AxesLabel -> {"\[Alpha]", "f"},
ImageSize -> 300],
Plot3D[
f[\[Alpha], \[Rho]1, \[Delta]], {\[Alpha], 0, 1}, {\[Rho]1, 0.001,
1},
PlotRange -> {0, 1},
AxesLabel -> {"\n\[Alpha]", "\n \[Rho]", "f "},
ImageSize -> 300],
Plot3D[
f[\[Alpha], \[Rho], \[Delta]1], {\[Alpha], 0, 1}, {\[Delta]1,
0, .5},
PlotRange -> {0, 1},
AxesLabel -> {"\n\[Alpha]", " \[Delta]", "f "},
ImageSize -> 300]}],
{\[Rho], 0.001, 1, Appearance -> "Labeled"},
{\[Delta], 0, .5, Appearance -> "Labeled"}]
Bob Hanlon
On Thu, Aug 23, 2012 at 2:54 AM, <JikaiRF at aol.com> wrote:
> Dear members;
>
> I have been embarrassed about a function Plot.
> I would like to plot a curve defined as follows:
>
> f(\[Alpha]) = (\[Rho] + \[Delta] - \[Delta] \[Alpha] - Sqrt[\[Delta] \[Rho] \
> \[Alpha] (1 - \[Alpha]) + \[Rho]^2 \[Alpha]])/((\[Rho] + \[Delta]) (1 \
> - \[Alpha])).
> Here, 0 < \[Alpha] < 1.
>
> And I programmed in this way;
> Plot[f(\[Alpha]), { \[Alpha], 0 < \[Alpha] < 1}]
>
> The curve I obtained from Mathematica is monotonously decreasing. AS a result, f(1) =0.
> However, by using l'H=F4pital7 theorem, f(1) = 1/2 is correct.
> In this situation, I would like to obtain an accurate curve.
>
> Sincerely,
> Fujio Takata
> Kobe University, Japan.
> I use Mathematica 8.040, Macintosh version.
>
>
- References:
- Ambiguity of "Plot"
- From: JikaiRF@aol.com
- Ambiguity of "Plot"