Re: Mathematica issue
- To: mathgroup at smc.vnet.net
- Subject: [mg127855] Re: Mathematica issue
- From: Matthias Bode <lvsaba at hotmail.com>
- Date: Sun, 26 Aug 2012 23:36:39 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References:
Hola: As neither Solve[] nor Reduce[] find an analytical solution there isn't any - most probably. One might, however, do - inter alia - this: Clear[a0, a1, b0, b1, c0, d0, eq01, sol01]eq01 = Expand[a0 + b0 + x^a1*(c0 - d0*x^b1) == 0]; sol01 = FindInstance[eq01, {a0, b0, c0, d0, a1, b1, x}, Reals]a0 + b0 + x^a1*(c0 - d0*x^b1) == 0 /. sol01N[sol01] Out[3]= {{a0 -> (46314691670528 - 1684956133536* 134^(7/10) - 15*134^(4/5))/ 57893364588160, b0 -> -(4/5), c0 -> 39/10, d0 -> -(3/2), a1 -> -(3/10), b1 -> -(49/10), x -> 134}} Out[4]= {True} Out[5]= {{a0 -> -0.09729070208467958, b0 -> -0.8, c0 -> 3.9, d0 -> -1.5, a1 -> -0.3, b1 -> -4.9, x -> 134.}} Best regards, MATTHIAS BODE S 17.35775=B0, W 066.14577=B0 2'740 m AMSL. > From: nma at 12000.org > Subject: Re: Mathematica issue > To: mathgroup at smc.vnet.net > Date: Sun, 26 Aug 2012 05:45:30 -0400 > > On 8/26/2012 3:18 AM, Nasser M. Abbasi wrote: > >> > >> I need analytical expression for the x in terms of A,B,C,D and a,b, > >> > > > > try this: > > > > parms = {A0 -> 1, B0 -> 2, a -> 3, C0 -> 4, D0 -> 5, b -> 6} > > eq = A0 + B0 + x^a (C0 - D0 x^b) == 0 > > sol = Solve[eq /. parms, x] > > Opps, just noticed you want symbolic solution. > Mathematica 8.04 does not do it. I doubt this can be solved symbolically. > Need to use some numbers for the parameters. > > Clear[A0, B0, a , C0, D0 , b] > eq = A0 + B0 + x^a (C0 - D0 x^b) == 0 > Solve[eq, x] > > Solve::nsmet: This system cannot be solved with the methods available to = Solve. >> > > --Nasser > >