Re: Mathematica strange behaviour finding a cubic root
- To: mathgroup at smc.vnet.net
- Subject: [mg129130] Re: Mathematica strange behaviour finding a cubic root
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Mon, 17 Dec 2012 02:57:12 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20121216060645.D7C256924@smc.vnet.net>
(-1/2)^(2/3) // N -0.31498 + 0.545562 I ((-1/2)^(1/3))^2 // N -0.31498 + 0.545562 I Solve[y^(3/2) == -1/2, y] // N {{y -> -0.31498 + 0.545562 I}} NSolve[y^(3/2) == -1/2, y] {{y -> -0.31498 + 0.545562 I}, {y -> -0.31498 - 0.545562 I}} Solve[y^3 == (-1/2)^2, y] // N {{y -> -0.31498 + 0.545562 I}, {y -> 0.629961}, {y -> -0.31498 - 0.545562 I}} ((-1/2)^2)^(1/3) // N 0.629961 This last approach forces a real result rather than the principal root of the original expression. ((-1/2)^2)^(1/3) == (y /. Solve[y^3 == (-1/2)^2, y, Reals][[1]]) // Simplify True Bob Hanlon This last approach forces a real result rather than the principal root of the original expression. On Sun, Dec 16, 2012 at 1:06 AM, <sergio_r at mail.com> wrote: > > How can I make Mathematica provides the same answer for > (-1/2)^(2/3) = ((-1/2)^2)^(1/3) ? > > What follows is a Mathematica session: > > In[1]:= (-1/2)^(2/3) > > 1 2/3 > Out[1]= (-(-)) > 2 > > In[2]:= N[%] > > Out[2]= -0.31498 + 0.545562 I > > In[3]:= ((-1/2)^2)^(1/3) > > -(2/3) > Out[3]= 2 > > In[4]:= N[%] > > Out[4]= 0.629961 > > > Sergio >
- References:
- Mathematica strange behaviour finding a cubic root
- From: sergio_r@mail.com
- Mathematica strange behaviour finding a cubic root