Re: Series on HypergeometricPFQ
- To: mathgroup at smc.vnet.net
- Subject: [mg126373] Re: Series on HypergeometricPFQ
- From: Alexei Boulbitch <Alexei.Boulbitch at iee.lu>
- Date: Fri, 4 May 2012 06:27:18 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Hi, all I encountered errors when doing the following expansion: Series[HypergeometricPFQ[{a, a}, {b, c, d}, x], {x, \[Infinity], 0}] The error message is: Table::iterb: "Iterator {K3,0,Ceiling[-Re[a]]} does not have appropriate bounds. " Any idea what's wrong in the above expansion? Many thanks! --- work around --- Alternatively, I could first add a small eps factor in the expansion, and eventually take it to zero: Series[HypergeometricPFQ[{a, a+eps}, {b, c, d}, x], {x, \[Infinity], 0}] The result looks reasonable. However it is very complicated and unnatural for a large expression. Hi, It seems that you simply have a diverging solution. Indeed, making use of your trick with eps one finds s = Series[ HypergeometricPFQ[{a, a + eps}, {b, c, d}, x], {x, \[Infinity], 0}] ((-1)^(1/4 (1 + 4 a - 2 b - 2 c - 2 d + 2 eps)) ((-1)^(1/4) E^( I a \[Pi] - (I b \[Pi])/2 - (I c \[Pi])/2 - (I d \[Pi])/2 + ( I eps \[Pi])/2 - 2 Sqrt[x]) - (-1)^(3/4) E^(-I a \[Pi] + (I b \[Pi])/2 + (I c \[Pi])/2 + (I d \[Pi])/ 2 - (I eps \[Pi])/2 + 2 Sqrt[x])) x^( 1/4 (1 + 4 a - 2 b - 2 c - 2 d + 2 eps)) Gamma[b] Gamma[c] Gamma[d])/(2 Sqrt[\[Pi]] Gamma[a] Gamma[a + eps]) + (Gamma[b] Gamma[c] Gamma[ d] (((-1)^-a x^-a Gamma[a] Gamma[eps])/( Gamma[-a + b] Gamma[-a + c] Gamma[-a + d]) + ((-1)^(-a - eps) x^(-a - eps) Gamma[-eps] Gamma[a + eps])/( Gamma[-a + b - eps] Gamma[-a + c - eps] Gamma[-a + d - eps])))/(Gamma[a] Gamma[a + eps]) If I check now its behaviour at eps->0 I find s /. \[Epsilon] -> 0 Infinity::indet: Indeterminate expression ComplexInfinity+ComplexInfinity encountered. >> Indeterminate It is since there are Gamma[eps] and Gamma[-eps] in this expression. Indeed, Gamma[\[Epsilon]] /. \[Epsilon] -> 0 ComplexInfinity However, there are only two terms, one containing Gamma[eps] and the other Gamma[-eps], and they are met in combination in the denominator of your expression. This part of in the denominator (let us call it "trm")is: trm = ((-1)^-a x^-a Gamma[a] Gamma[eps])/( Gamma[-a + b] Gamma[-a + c] Gamma[-a + d]) + ((-1)^(-a - eps) x^(-a - eps) Gamma[-eps] Gamma[a + eps])/( Gamma[-a + b - eps] Gamma[-a + c - eps] Gamma[-a + d - eps]); If one goes to eps->0 in term, one finds a finite result (let us call it "trmExp"): trmExp = Series[trm, {eps, 0, 0}] // Normal // FullSimplify -((E^(-I a \[Pi]) x^-a Gamma[ a] (EulerGamma - I \[Pi] + HarmonicNumber[-1 - a + c] - Log[x] + PolyGamma[0, a] + PolyGamma[0, -a + b] + PolyGamma[0, -a + d]))/( Gamma[-a + b] Gamma[-a + c] Gamma[-a + d])) Now one may substitute the term trmExp, that we obtained into the place of trm: res = (((-1)^( 1/4 (1 + 4 a - 2 b - 2 c - 2 d + 2 eps)) ((-1)^(1/4) E^( I a \[Pi] - (I b \[Pi])/2 - (I c \[Pi])/2 - (I d \[Pi])/ 2 + (I eps \[Pi])/2 - 2 Sqrt[x]) - (-1)^(3/4) E^(-I a \[Pi] + (I b \[Pi])/2 + (I c \[Pi])/2 + ( I d \[Pi])/2 - (I eps \[Pi])/2 + 2 Sqrt[x])) x^( 1/4 (1 + 4 a - 2 b - 2 c - 2 d + 2 eps)) Gamma[b] Gamma[c] Gamma[d])/(2 Sqrt[\[Pi]] Gamma[a] Gamma[a + eps]) + (Gamma[b] Gamma[c] Gamma[ d] (trmExp))/(Gamma[a] Gamma[a + eps])) /. eps -> 0 ((-1)^(1/4 (1 + 4 a - 2 b - 2 c - 2 d)) ((-1)^(1/4) E^( I a \[Pi] - (I b \[Pi])/2 - (I c \[Pi])/2 - (I d \[Pi])/2 - 2 Sqrt[x]) - (-1)^(3/4) E^(-I a \[Pi] + (I b \[Pi])/2 + (I c \[Pi])/2 + (I d \[Pi])/2 + 2 Sqrt[x])) x^(1/4 (1 + 4 a - 2 b - 2 c - 2 d)) Gamma[b] Gamma[c] Gamma[d])/( 2 Sqrt[\[Pi]] Gamma[a]^2) - (E^(-I a \[Pi]) x^-a Gamma[b] Gamma[c] Gamma[ d] (EulerGamma - I \[Pi] + HarmonicNumber[-1 - a + c] - Log[x] + PolyGamma[0, a] + PolyGamma[0, -a + b] + PolyGamma[0, -a + d]))/(Gamma[ a] Gamma[-a + b] Gamma[-a + c] Gamma[-a + d]) So, it seems to be possible to get through, but be careful with this solution. I did it on-the-napkin-like, and if you like this approach, you should check the correctness of each step. Have fun, Alexei Alexei BOULBITCH, Dr., habil. IEE S.A. ZAE Weiergewan, 11, rue Edmond Reuter, L-5326 Contern, LUXEMBOURG Office phone : +352-2454-2566 Office fax: +352-2454-3566 mobile phone: +49 151 52 40 66 44 e-mail: alexei.boulbitch at iee.lu