Re: Coefficient
- To: mathgroup at smc.vnet.net
- Subject: [mg126553] Re: Coefficient
- From: J Jesus Rico-Melgoza <ricomelgozajjesus at gmail.com>
- Date: Sat, 19 May 2012 05:42:07 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201205180924.FAA17091@smc.vnet.net>
Thanks for you answers Alexei, your last suggestion works fine for want I want to do. Though, I am still trying to understand the syntaxis of the function CoeffCos! Jesus ------------------------------------- If you need that the coefficient contains no functional dependence at all, the above function should be slightly modified: coeffCos[expr_] := Plus @@ Select[List @@ Coefficient[expr, Cos[t]], FreeQ[#, x_[t]] &]; Then let us check it with a more complicated expression: series = a + b Cos[t] + c x[t] Cos[t] + d*y*Cos[t] + x[t]^2*Cos[t] + z[t]*Cos[t] + A[t]*x[t]*Cos[t]; coeffCos[series] b + d y --------------------------------- 2012/5/18 Alexei Boulbitch <Alexei.Boulbitch at iee.lu> > Dear members, > > I am using the function Coefficient[expr, form] in series such as > > x(t)=a+b Cos[t]+c x[t]Cos[t] > > I wonder if it is possible to force mathematica to find only the > coefficient b when using > > series = a + b Cos[t] + c x[t] Cos[t] > > Coefficient[series, Cos[t]] > > > Sol > > b + c x[t] > > > Regards > > > Jesus Rico-Melgoza > > > Hi, Jesus, > > It is not quite clear, what in general do you want to avoid. Is it that > your final expression for the coefficient should not contain x[t]? If yes, > I see a simple walk around. > Assume we have the the series expression slightly more general, than in > your case: > > series = a + b Cos[t] + c x[t] Cos[t] + d*y*Cos[t] + x[t]^2*Cos[t]; > > The idea is that after the complete coefficient in front of Cos[t] is > obtained: > > expr1 = Coefficient[series, Cos[t]] > > b + d y + c x[t] + x[t]^2 > > one may transform it into list: > > expr2 = List @@ expr1 > > {b, d y, c x[t], x[t]^2} > > And further select only terms free of x[t]: > > expr3 = Select[expr2, FreeQ[#, x[t]] &] > > {b, d y} > > Now one may transform it back into the sum: > > Plus @@ expr3 > > b + d y > > Now all this may be collected into a function: > > coeffCos[expr_] := > Plus @@ Select[List @@ Coefficient[expr, Cos[t]], FreeQ[#, x[t]] &]; > > and check: > > coeffCos[series] > > b + d y > > If you need that the coefficient contains no functional dependence at all, > the above function should be slightly modified: > > coeffCos[expr_] := > Plus @@ Select[List @@ Coefficient[expr, Cos[t]], FreeQ[#, x_[t]] &]; > > Then let us check it with a more complicated expression: > > series = a + b Cos[t] + c x[t] Cos[t] + d*y*Cos[t] + x[t]^2*Cos[t] + > z[t]*Cos[t] + A[t]*x[t]*Cos[t]; > > coeffCos[series] > > b + d y > > Have fun, Alexei > > Alexei BOULBITCH, Dr., habil. > IEE S.A. > ZAE Weiergewan, > 11, rue Edmond Reuter, > L-5326 Contern, LUXEMBOURG > > Office phone : +352-2454-2566 > Office fax: +352-2454-3566 > mobile phone: +49 151 52 40 66 44 > > e-mail: alexei.boulbitch at iee.lu > >
- References:
- Re: Coefficient
- From: Alexei Boulbitch <Alexei.Boulbitch@iee.lu>
- Re: Coefficient