Re: Fourier DFT scaling problem
- To: mathgroup at smc.vnet.net
- Subject: [mg126609] Re: Fourier DFT scaling problem
- From: W Craig Carter <ccarter at mit.edu>
- Date: Thu, 24 May 2012 03:32:22 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <jpflom$ktd$1@smc.vnet.net> <201205230730.DAA05002@smc.vnet.net>
Hello Kevin, The snippet you provided was useful and timely for me. Would you happen to have something similar for spectral derivatives using Fourier[], FourierDCT[], and FourierDST[]? Thanks in any case, Craig Carter On May 23, 2012, at Wed, May 23, 12 ---3:30 AM, Kevin J. McCann wrote: > Psi[x_] := \[Pi]^(-1/4) E^(-(x^2/2)) > > \[ScriptCapitalN] = 2^8; > L = 32.0; > \[CapitalDelta]x = L/\[ScriptCapitalN]; > x = -16 + Table[i, {i, 0, \[ScriptCapitalN] - 1}]*\[CapitalDelta]x; > \[CapitalDelta]k = 1/L; > > f = Psi[x]; > k = Table[n \[CapitalDelta]k, {n, 0, \[ScriptCapitalN] - 1}]; > > F = \[CapitalDelta]x Fourier[f, FourierParameters -> {1, -1}]; > ListPlot[Transpose[{k, Abs[F]^2}], PlotRange -> All, Joined -> True] > (* This part rotates the k-spectrum so it "looks right" *) > krot = Table[ > n \[CapitalDelta]k, {n, -(\[ScriptCapitalN]/2), \[ScriptCapitalN]/ > 2 - 1}]; > Frot = RotateRight[F, \[ScriptCapitalN]/2]; > ListPlot[Transpose[{krot, Abs[Frot]^2}], PlotRange -> All, > Joined -> True] > (* Check that Parseval is right *) > {Total[Abs[f]^2] \[CapitalDelta]x, Total[Abs[F]^2] \[CapitalDelta]k}
- References:
- Re: Fourier DFT scaling problem
- From: "Kevin J. McCann" <kjm@KevinMcCann.com>
- Re: Fourier DFT scaling problem