Re: Eigenvalue and eigenvectors of a 10x10 matrix
- To: mathgroup at smc.vnet.net
- Subject: [mg128080] Re: Eigenvalue and eigenvectors of a 10x10 matrix
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Fri, 14 Sep 2012 00:23:15 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20120913073743.F312F6764@smc.vnet.net>
mat = { {0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {-(1 + K + K1), -0.1, K, 0, 0, 0, 0, 0, K1, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {K, 0, -(1 + 2 K + K1), -0.1, K, 0, 0, 0, K1, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, K, 0, -(1 + 2 K + K1), -0.1, K, 0, K1, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, K, 0, -(1 + K + K1), -0.1, K1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {K1, 0, K1, 0, K1, 0, K1, 0, -(1 + 4 K1), -0.1}}; Rationalize the matrix first and you will get radicals rather than Root objects. ev1 = Eigenvalues[Rationalize[mat]] // Simplify {(1/20)*I*(I + Sqrt[399]), (-(1/20))*I*(-I + Sqrt[399]), (1/20)*(-1 - Sqrt[-399 - 2000*K1]), (1/20)*(-1 + Sqrt[-399 - 2000*K1]), (1/20)*(-1 - Sqrt[-399 - 800*K - 400*K1]), (1/20)*(-1 + Sqrt[-399 - 800*K - 400*K1]), (1/20)*(-1 - Sqrt[-399 - 400*(2 + Sqrt[2])*K - 400*K1]), (1/20)*(-1 + Sqrt[-399 - 400*(2 + Sqrt[2])*K - 400*K1]), (1/20)*(-1 - Sqrt[-399 + 400*(-2 + Sqrt[2])*K - 400*K1]), (1/20)*(-1 + Sqrt[-399 + 400*(-2 + Sqrt[2])*K - 400*K1])} Alternatively, ev2 = Eigenvalues[mat] // Rationalize // ToRadicals // Simplify {(1/20)*(-1 - Sqrt[-399 + 400*(-2 + Sqrt[2])*K - 400*K1]), (1/20)*(-1 + Sqrt[-399 + 400*(-2 + Sqrt[2])*K - 400*K1]), (1/20)*(-1 - Sqrt[-399 - 400*(2 + Sqrt[2])*K - 400*K1]), (1/20)*(-1 + Sqrt[-399 - 400*(2 + Sqrt[2])*K - 400*K1]), (1/20)*(-1 - Sqrt[-399 - 2000*K1]), (1/20)*(-1 + Sqrt[-399 - 2000*K1]), (1/20)*(-1 - Sqrt[-399 - 800*K - 400*K1]), (1/20)*(-1 + Sqrt[-399 - 800*K - 400*K1]), (-(1/20))*I*(-I + Sqrt[399]), (1/20)*I*(I + Sqrt[399])} Sort[ev1] === Sort[ev2] True To learn about Root objects see http://reference.wolfram.com/mathematica/ref/Root.html Bob Hanlon On Thu, Sep 13, 2012 at 3:37 AM, Redeemed <cakpovo at gmail.com> wrote: > I want to do the eigen analysis of the matrix below > mat := {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {-(1 + K + K1), -0.1, K, 0, 0, > 0, 0, 0, K1, 0}, > {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {K, 0, -(1 + 2 K + K1), -0.1, K, 0, > 0, 0, K1, 0}, > {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, K, 0, -(1 + 2 K + K1), -0.1, > K, 0, K1, 0}, > {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, K, > 0, -(1 + K + K1), -0.1, K1, 0}, > {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {K1, 0, K1, 0, K1, 0, K1, > 0, -(1 + 4 K1), -0.1}}; > > I kept getting a long solution with some Root [] and #1 > I do not know what I am doing wrong > Any help, > Its very urgent > > Thanks >
- References:
- Eigenvalue and eigenvectors of a 10x10 matrix
- From: Redeemed <cakpovo@gmail.com>
- Eigenvalue and eigenvectors of a 10x10 matrix