Re: Eigenvalue and eigenvectors of a 10x10 matrix
- To: mathgroup at smc.vnet.net
- Subject: [mg128086] Re: Eigenvalue and eigenvectors of a 10x10 matrix
- From: Ray Koopman <koopman at sfu.ca>
- Date: Fri, 14 Sep 2012 00:25:15 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <k2s2o4$dpk$1@smc.vnet.net>
On Sep 13, 12:43 am, Redeemed <cakp... at gmail.com> wrote: > I want to do the eigen analysis of the matrix below > mat := {{0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {-(1 + K + K1), -0.1, K, 0, 0, > 0, 0, 0, K1, 0}, > {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {K, 0, -(1 + 2 K + K1), -0.1, K, 0, > 0, 0, K1, 0}, > {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, K, 0, -(1 + 2 K + K1), -0.1, > K, 0, K1, 0}, > {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, K, > 0, -(1 + K + K1), -0.1, K1, 0}, > {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {K1, 0, K1, 0, K1, 0, K1, > 0, -(1 + 4 K1), -0.1}}; > > I kept getting a long solution with some Root [] and #1 > I do not know what I am doing wrong > Any help, > Its very urgent > > Thanks Change .1 to 1/10 mat = { {0, 1, 0, 0, 0, 0, 0, 0, 0, 0}, {-(1+K+K1), -1/10, K, 0, 0, 0, 0, 0, K1, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {K, 0, -(1+2K+K1), -1/10, K, 0, 0, 0, K1, 0}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 0, K, 0, -(1+2K+K1), -1/10, K, 0, K1, 0}, {0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, K, 0, -(1+K+K1), -1/10, K1, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {K1, 0, K1, 0, K1, 0, K1, 0, -(1+4K1), -1/10}}; Eigenvalues[mat] {(1/20)*(-1 + I*Sqrt[399]), (1/20)*(-1 - I*Sqrt[399]), (1/20)*(-1 - Sqrt[-399 - 2000*K1]), (1/20)*(-1 + Sqrt[-399 - 2000*K1]), (1/20)*(-1 - Sqrt[-399 - 800*K - 400*K1]), (1/20)*(-1 + Sqrt[-399 - 800*K - 400*K1]), (1/20)*(-1 - Sqrt[-399 - 800*K - 400*Sqrt[2]*K - 400*K1]), (1/20)*(-1 + Sqrt[-399 - 800*K - 400*Sqrt[2]*K - 400*K1]), (1/20)*(-1 - Sqrt[-399 - 800*K + 400*Sqrt[2]*K - 400*K1]), (1/20)*(-1 + Sqrt[-399 - 800*K + 400*Sqrt[2]*K - 400*K1])} Eigensystem[mat] returns similar output, but too much to give here.