Re: NonlinearModelFit and assumptions on fit parameters
- To: mathgroup at smc.vnet.net
- Subject: [mg128205] Re: NonlinearModelFit and assumptions on fit parameters
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Mon, 24 Sep 2012 00:32:29 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20120923070133.C4792686E@smc.vnet.net>
As shown in the documentation
data = {{1, 1}, {2, 2}, {3, 3.2}};
fitFuncExactNoLosses[a_, b_, x_] =
a*x^2 + b + x;
(nlm1 = NonlinearModelFit[data,
{fitFuncExactNoLosses[a, b, x], b > 0},
{{a, 1}, {b, 1}}, x]) // Normal
7.890764227861177*^-7 + x +
0.018364206486339258*x^2
nlm1["FitResiduals"]
{-0.018365, -0.0734576, 0.0347214}
(nlm2 = NonlinearModelFit[data,
{fitFuncExactNoLosses[a, b, x], b > 0},
{a, b}, x]) // Normal
0.011226160044776182 + x +
0.016760582112590634*x^2
nlm2["FitResiduals"]
{-0.0279867, -0.0782685, 0.0379286}
Plot[{nlm1[x], nlm2[x]}, {x, 0, 4},
Epilog -> {Red,
AbsolutePointSize[4],
Point[data]}]
Bob Hanlon
On Sun, Sep 23, 2012 at 3:01 AM, Niles <niels.martinsen at gmail.com> wrote:
> Hi
>
> I have a set of data (x, y) that I can succesfully fit a nonlinear function to using NonlinearModelFit:
>
>
> data = {{1, 1}, {2, 2}, {3, 3.2}};
> fitFuncExactNoLosses[a_, b_, x_] := a*x^2 + b + x;
> nlm = NonlinearModelFit[data, fitFuncExactNoLosses[a, b, x],
> {
> {a, 1},
> {b, 1}},
> x]
>
>
> However, the paramter "b" comes out negative and it *must* be positive. Is there a way to utilize assumptions such that b is constrained to be grater than zero?
>
> Best,
> Niels.
>
- References:
- NonlinearModelFit and assumptions on fit parameters
- From: Niles <niels.martinsen@gmail.com>
- NonlinearModelFit and assumptions on fit parameters