MathGroup Archive 2013

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Applying Mathematica to practical problems

  • To: mathgroup at
  • Subject: [mg131016] Re: Applying Mathematica to practical problems
  • From: Andrzej Kozlowski <akozlowski at>
  • Date: Tue, 4 Jun 2013 01:58:03 -0400 (EDT)
  • Delivered-to:
  • Delivered-to:
  • Delivered-to:
  • Delivered-to:
  • References: <kmngb2$3rv$> <> <> <ko9ipa$kde$> <> <koehcf$2s8$> <> <>

For those who have seen the innumerate past discussion of this topic: 
essentially it all amounts to the fact I mentioned below, that on the 
set of all "numbers" available in Mathematica, the ordinary equality (==
 or Equal) is not an identity relation; in particular, it is 
non-transitive. That's all. In fact Richard made once (or rather, at 
least once) an attempt to show that one could dispense with Equal and 
replace it with SameQ - if I recall correctly it was not a success but I 
don't want to spend more time on this matter so won't bother looking for 
past posts about this.

My point about non-standard analysis was that seemingly strange 
"extensions" of the concept on number are common in mathematics: the 
best known example is adjoining positive and negative infinity to the 
real line. Non-standard analysis is another such example. Imbedding real 
and complex numbers in a wider set, which contains "non-exact" numbers 
is simply another example of this approach. I have not tried to consider 
this carefully, but I am pretty sure it can all be made logically 
consistent. In general the arithmetic of numbers of varying precision 
will be "strange", even the associative law for addition will not hold 
in general. There is nothing wrong with this. The only somewhat 
controversial issue is that Mathematica's extension of equality to such 
entities is not an identity relation. There are technical reasons for 
this and I don't think this is a problem, particularly that Mathematica 
also has (of course!) the genuine identity (SameQ or ===).

Andrzej Kozlowski

On 3 Jun 2013, at 12:05, Andrzej Kozlowski <akoz at> wrote:

> On 3 Jun 2013, at 09:34, Richard Fateman <fateman at> wrote:
>> On 6/1/2013 9:23 PM, Andrzej Kozlowski wrote:
>>> This is one of many examples of "cross purpose" arguing. I was not
>>> discussing implementing non-standard analysis at all. My point was
>>> that that there is nothing logically more dubious about a finite
>>> "number" x such that x+1=1 than there is about a positive "number" x
>>> such that nx< 1 for every positive integer n, or, alternatively,
>>> finite "number" x such that x/n >1 for every positive integer n.
>>> Mathematicians often use the word "number" when referring to objects
>>> belonging to some "extension" of the real line.
>> Oh where to start.  Here's one place.
>> You say it is ok to have a number x such that x+1=1.  I agree.
>> I say it is NOT ok to have a number x such that x+1=x.
>>  You respond
>> It is ok to have a number x such that x+1=1.
>>  Can you see the difference?
> Yes, I was careless about this, but that was because it does not 
really matter. It is O.K. to extend the real line to an algebraic and 
topological sturcture which contains objects such x such that x+1=x. 
Of course such objects do not have inverses, so you can't conclude that 
0=1.  Admittedly, in Mathematica the underlying logic is obscured by 
the fact that it equality is not identity, so you do have
> 1`0 == 1
> True
> 1`0 == 0
> True
> but
> 1`0 == 0
> True
> All this means that equality is a non-transitive relation on this 
extended set of objects (but identity is). That is also logically 
perfectly sound.
>> Also is the Grobner basis program in Mathematica the fastest?
>> I suspect it is not, though I have not compared it to Faugere's
>> work, or other unnamed systems. Is it the only one using significance
>> arithmetic?  I suspect it is.  What would that prove?  What
>> would that prove about use as a default?
> This is nonsense. Faugere does not work on numerical analysis and has 
not implemented a numerical Groebner basis. Other people have worked on 
approximate Grobener bases using fixed precision arithmetic but (as far 
as I know) there are no working implementations available.
> Groebner bases with exact coefficients are an entirely different 
subject, unrelated to this discussion.
>> Finally, I would remind AK (and others)
>> that proving some number of correct results
>> does not prove an algorithm is correct.  Proving even one incorrect
>> result demonstrates a bug.
> You have never demonstrated one incorrect result proved by 
> AK

  • Prev by Date: Re: Applying Mathematica to practical problems
  • Next by Date: Rookie questions about solving for small numbers and others
  • Previous by thread: Re: Applying Mathematica to practical problems
  • Next by thread: Re: Applying Mathematica to practical problems