Re: Problem in solving Differential Equation
- To: mathgroup at smc.vnet.net
- Subject: [mg130239] Re: Problem in solving Differential Equation
- From: Rahul Chakraborty <rahul.6sept at gmail.com>
- Date: Thu, 28 Mar 2013 04:05:38 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20130306031441.3FE5E665F@smc.vnet.net>
Sir,
Can you kindly see what is the mistake in this code of mine. Its not
giving me the output.
Clear [x,t];
eqn=x'[t]+lambda*x[t]==0;
Manipulate[[sol_]=NDSolve[{eqn,x[0]==1/2},x[t],{t,0,50}][[1]];
ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,25},PlotRange->{{-20,20},{-25,25}},Frame->True,Axes->False,FrameLabel->(Style[#,"Courier",Bold,16]&/@{"x",Overscript[x,"."]}),AspectRatio->1,PlotStyle->{{Red,AbsoluteThickness[2]}}],{{lambda,0.5},0,5}]
Sincerely,
Rahul
On 3/6/13, Bob Hanlon <hanlonr357 at gmail.com> wrote:
> Arguments to functions (e.g., Sin, Cos) must be enclosed in squares
> brackets: Sin[x[t]] and Cos[x[t]]
>
> Clear[x];
> \[Omega] = -2;
> eqn =
> x''[t] + Sin[x[t]] - \[Omega]^2 Sin [x[t]] Cos[x[t]] == 0 //
> Simplify;
> sol = NDSolve[
> {eqn, x[0] == 1/2, x'[0] == 0},
> x[t], {t, 0, 25}][[1]];
> ParametricPlot[
> Evaluate[{x[t] /. sol, D[x[t] /. sol, t]}],
> {t, 0, 25},
> Frame -> True,
> Axes -> False,
> FrameLabel -> (Style[#, "Courier", Bold, 16] & /@
> {x, Overscript[x, "."]}),
> AspectRatio -> 1,
> PlotStyle -> {{Red, AbsoluteThickness[2]}}]
> ParametricPlot[
> Evaluate[{t, x[t] /. sol}],
> {t, 0, 10},
> Frame -> True,
> Axes -> False,
> FrameLabel -> (Style[#, "Courier", Bold, 16] & /@
> {t, x}),
> AspectRatio -> .5,
> PlotStyle -> {{Green, AbsoluteThickness[3]}}]
>
>
> Bob Hanlon
>
>
> On Tue, Mar 5, 2013 at 10:14 PM, Rahul Chakraborty
> <rahul.6sept at gmail.com> wrote:
>> Dear all,
>>
>> Following differential equation seems to have some error in coding by me.
>> kindly let me know where i have gone wrong.
>>
>> Clear[x];
>> \[Omega]:=-2;
>> eqn=x''[t]+ Sin x[t]-\[Omega]^2 Sin x[t]Cos x[t]==0//Simplify;
>> sol=NDSolve[{eqn,x[0]==1/2,x'[0]==0},x[t],{t,0,1000}][[1]]
>> ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,25},Frame->True,AxesLabel->{"x",Overscript[x,"."]},AspectRatio->1,PlotStyle->{{Red,AbsoluteThickness[2]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}]
>> ParametricPlot[Evaluate[{t,x[t]/.sol}],{t,0,10},Frame->True,AxesLabel->{"t","x"},AspectRatio->.5,PlotStyle->{{Green,AbsoluteThickness[3]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",FontSize->16}]
>>
>> Regards,
>>
>> rahul
>>
>
- References:
- Problem in solving Differential Equation
- From: Rahul Chakraborty <rahul.6sept@gmail.com>
- Problem in solving Differential Equation