Help with RootLocusPlot
- To: mathgroup at smc.vnet.net
- Subject: [mg130677] Help with RootLocusPlot
- From: "Eduardo M. A. M. Mendes" <emammendes at gmail.com>
- Date: Wed, 1 May 2013 21:39:50 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
Hello I am using Manipulate to see how the gain k affects the response of a system. Two graphics are shown: OuputResponse and RootLocusPlot. Below you will find the piece of code I am working with. copenloop[k_,z_]:=TransferFunctionModel[(k(s+z))/(s(s+4)(s+6)),s];copenloop[k,z] cclosedloop[k_,z_]:=SystemsModelFeedbackConnect[copenloop[k,z]];cclosedloop[k,z] Clear[crlPlt,croots,crespPlt]; crlPlt[k_,z_]:=RootLocusPlot[Evaluate@copenloop[k,z],{k,0,250},PlotLabel->Style[Evaluate@copenloop[k,z] ,16],PlotRange-> Automatic,ImageSize-> {250,300},PlotStyle-> Thickness[0.02]]; croots[s_,loc_,z_]:=Quiet@Solve[copenloop[loc,z][[1,1,1,1]]/copenloop[loc,z][[1,2]]==-1,s]; crespPlt[tmax_,k_,z_]:=OutputResponse[cclosedloop[k,z],UnitStep[t],{t,0,tmax}]; Manipulate[GraphicsRow[{Show[Plot[Evaluate[crespPlt[100,loc,z]],{t,0,6},PlotRange->{All,{0,1.5}},AxesOrigin-> {0,0},GridLines->Automatic,GridLinesStyle-> Dashed,AspectRatio->Full,AxesLabel->{Style["t",Italic,14],Style["y(t)",Italic,14]},PlotLabel->Style["Step Response and Root Locus",16],PlotStyle-> Thickness[0.01],ImageSize-> {250,250}]], Show[Evaluate@crlPlt[loc,z],Graphics[{Gray,AbsolutePointSize[10],Tooltip[Point[#],"k=="<>ToString[loc]]&/@({Re[s],Im[s]}/.croots[s,loc,z])}]]}], Style["Root Locus" ,18,Bold],"",Delimiter,{{loc,k1,"Gain (k)"},0,100,1,Appearance->"Labeled"},Delimiter,{{z,z2,"Zero (z)"},0,20,1,Appearance->"Labeled"},SaveDefinitions-> True] The second panel does not show what I need. What am I doing wrong? I feel that I am missing something .... Many thanks Ed