Re: Repeated Integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg130850] Re: Repeated Integrals
- From: Peter Pein <petsie at dordos.net>
- Date: Tue, 21 May 2013 00:03:12 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <kna71o$fve$1@smc.vnet.net>
Am 19.05.2013 11:46, schrieb briankolo at gmail.com: > I'm fairly new to Mathematica and I'm trying to create an expression for a set of nested integrals. The innermost integral is > > int[0,x,L(y,a)g(y),dy] > > Where g(y) is an arbitrary function and a is a parameter. The next integral is > > int[0,w,L(x,b)h(x,a),dx] > > Where b is a parameter and h(x,a) is the result of the previous integral. > > The process then repeats N times. Is there a simple way to express this in Mathematica? > > Nest/NestList are your friends: intlist = With[ (* toy example *) {L = HeavisideTheta[#1, 1 - #1/#2]&, g = Cos[Pi #]&, a = 3, b = 2}, Assuming[Element[x, Reals], (* needed in this case *) NestList[ Block[{t}, Integrate[L[t, b] (# /. x->t), {t, 0, x}]]&, Integrate[L[y, a] g[y], {y, 0, x}], 5] ] ]; Peter P.S.: in this example, try the plot: Plot[MapIndexed[#1*Gamma[#2 + 1] x^-#2 &, intlist] // Evaluate, {x, -.1, 3.5}, PlotRange -> {-.22, 1}, Exclusions -> None, PlotLegends -> Automatic, WorkingPrecision -> 1.5 $MachinePrecision]