Re: Integrating a Matrix
- To: mathgroup at smc.vnet.net
 - Subject: [mg132059] Re: Integrating a Matrix
 - From: Bob Hanlon <hanlonr357 at gmail.com>
 - Date: Thu, 28 Nov 2013 02:21:12 -0500 (EST)
 - Delivered-to: l-mathgroup@mail-archive0.wolfram.com
 - Delivered-to: l-mathgroup@wolfram.com
 - Delivered-to: mathgroup-outx@smc.vnet.net
 - Delivered-to: mathgroup-newsendx@smc.vnet.net
 - References: <20131127062412.B370C69F5@smc.vnet.net>
 
tab = Table[f[i, j][x], {i, 3}, {j, 3}]
Integrate[tab, {x, 0, 1}]
tab2 = tab /. f[i_, j_][x_] -> (i + j) x^i
{{2*x, 3*x, 4*x}, {3*x^2,
     4*x^2, 5*x^2}, {4*x^3,
     5*x^3, 6*x^3}}
Integrate[tab2, {x, 0, 1}]
{{1, 3/2, 2}, {1, 4/3, 5/3},
   {1, 5/4, 3/2}}
NIntegrate[tab2, {x, 0, 1}]
{{1., 1.5, 2.}, {1., 1.33333, 1.66667}, {1., 1.25, 1.5}}
Bob Hanlon
On Wed, Nov 27, 2013 at 1:24 AM, David Barnes <barnes at pullman.com> wrote:
> I have a 3X3 matrix of functions fij[x], for i,j = 1,2,3, and I want to
> NIntegrate all nine elements over 0<x<1 to get a matrix of constants. Is
> there an easy way to do this other that doing 9 individual NIntegration's?
>
>
- References:
- Integrating a Matrix
- From: David Barnes <barnes@pullman.com>
 
 
 - Integrating a Matrix