Re: Need to split function into terms and then plot
- To: mathgroup at smc.vnet.net
 - Subject: [mg131917] Re: Need to split function into terms and then plot
 - From: W Craig Carter <ccarter at MIT.EDU>
 - Date: Tue, 29 Oct 2013 02:50:58 -0400 (EDT)
 - Delivered-to: l-mathgroup@mail-archive0.wolfram.com
 - Delivered-to: l-mathgroup@wolfram.com
 - Delivered-to: mathgroup-outx@smc.vnet.net
 - Delivered-to: mathgroup-newsendx@smc.vnet.net
 - References: <20131029032235.DD52B6A23@smc.vnet.net>
 
Hello Honza,
Here are five methods.
originalList = {u1 (1 + 2 x^2/le^2 - 3 x/le) + u3 (2 x^2/le^2 - x/le) + 
  u2 (-4 x^2/le^2 + 4 x/le)}
Map[Coefficient[originalList[[1]], #] &, {u1, u2, u3}]
Table[Coefficient[originalList[[1]], val], {val, {u1, u2, u3}}]
Through[{Coefficient[#, u1] &, Coefficient[#, u2] &, 
   Coefficient[#, u1] &}[originalList[[1]]]]
extractCoeffs[list_, factorsList_] :=  
 Map[Coefficient[list, #] &, factorsList]
extractCoeffs[originalList, {u1, u2, u3}]
extractCoeffs[originalList[[1]], {u1, u2, u3}]
Kind Regards, WCC
On Oct 28, 13, at 20:22 PM, Honza Vorel wrote:
> #I'll get {u1(1+2x^2/le^2-3x/le)+u3(2x^2/le^2-x/le)+u2(-4x^2/le^2+4x/le)}
> 
> #Now I need to separate the above like this (le=1.5):
> 
> # n1=(1+2x^2/le^2-3x/le)
> # n2=(-4x^2/le^2+4x/le)
> # n3=(2x^2/le^2-x/le)
> 
> # And I don't know how.
- References:
- Need to split function into terms and then plot
- From: Honza Vorel <honzavorel@gmail.com>
 
 
 - Need to split function into terms and then plot