Re: parametric plot and filling
- To: mathgroup at smc.vnet.net
- Subject: [mg131561] Re: parametric plot and filling
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Sun, 1 Sep 2013 03:16:37 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <kuvkbl$mp9$1@smc.vnet.net>
The approach recommended by Roland Franzius works for your example:
ParametricPlot[{Cos[x], Sin[x^2]},
{x, 0, Pi}]
ListLinePlot[
Table[{Cos[x], Sin[x^2]},
{x, 0, Pi, Pi/64}],
AspectRatio -> 1,
Filling -> {1 -> {0, {White, LightBlue}}}]
Bob Hanlon
On Sat, Aug 31, 2013 at 8:15 AM, Francisco Gutierrez <fgutiers2002 at yahoo.com
> wrote:
>
> Many thanks to Helen Read, Craig Carter, Murray Eisenberg, Roland
> Franzius, Bob Hanlon, and other group members/gurus for their responses to
> my query. As always, a nice set of excellent solutions (for example
> Helen's), which corroborates
> how good a resource this group is. By now I think no more answers will
> come in.
>
> Indeed, as Murray Eisenberg notes, there are situations in which the
> filling option simply does not make sense. Even then, there are other
> situations where it does. Suppose you have the following curve:
>
> ParametricPlot[{Cos[x],Sin[x^2]}, {x,0,Pi}]
>
>
> One could want to highlight the regions in which the curve goes above the
> x axis. Filling would come in handy there.
>
> Well, once again, thanks!
> Francisco
>
>