Re: Integrating special functions
- To: mathgroup at smc.vnet.net
 - Subject: [mg131599] Re: Integrating special functions
 - From: Alexei Boulbitch <Alexei.Boulbitch at iee.lu>
 - Date: Tue, 10 Sep 2013 03:34:48 -0400 (EDT)
 - Delivered-to: l-mathgroup@mail-archive0.wolfram.com
 - Delivered-to: l-mathgroup@wolfram.com
 - Delivered-to: mathgroup-outx@smc.vnet.net
 - Delivered-to: mathgroup-newsendx@smc.vnet.net
 
Dear All,
I would like to integrate the following function with Legendre polynomial and Gamma function. I am open to any suggestions.
 ass = {s > 0, \[Alpha] > 0};
 \[Phi][s_, x_, \[Alpha]_] := (-1)^s Sqrt[(s \[Alpha])/
  Gamma[1 + 2*s]] LegendreP[s, s, Tanh[\[Alpha] x]]
\[Phi]1[s_, x_, \[Alpha]_] := D[[\[Phi][s, x, \[Alpha]], x]]
a3 = Table[
  Integrate[-\[ImaginaryI] x \[Phi][s, x, a] \[Phi]1[s, x,
     a], {x, -\[Infinity], \[Infinity]}, Assumptions -> \[Alpha] > 0,
   s > 0]
would it be possible to get a closed form of the integration a3?
Hi, Herman,
Since f(x)*f'(x)=g'(x) where g(x)=0.5*[f(x)]^2, your integral is easily transformed by parts into form:
Integrate[x*g'[x],x]===x*g(x)-Integrate[g[x],x]
You may add any limits to the above integral. The last term above is:
int=Integrate[LegendreP[s, s,Tanh[x]]^2, {x, -\[Infinity], \[Infinity]}]
It is approximately int=Exp[-1.025+1.303*s^3/2] as I have shown here:
http://mathematica.stackexchange.com/questions/31534/integrating-special-functions/31776?noredirect=1#comment99086_31776
Have fun, Alexei
Alexei BOULBITCH, Dr., habil.
IEE S.A.
ZAE Weiergewan,
11, rue Edmond Reuter,
L-5326 Contern, LUXEMBOURG
Office phone :  +352-2454-2566
Office fax:       +352-2454-3566
mobile phone:  +49 151 52 40 66 44
e-mail: alexei.boulbitch at iee.lu