Re: Three masses and four springs
- To: mathgroup at smc.vnet.net
- Subject: [mg132598] Re: Three masses and four springs
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Thu, 17 Apr 2014 05:09:55 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <20140416074027.11A846A2B@smc.vnet.net>
Use FullSimplify DSolve[{ -2*x1[t] + x2[t] == x1''[t], -2*x2[t] + x3[t] + x1[t] == x2''[t], -2*x3[t] + x2[t] == x3''[t], x1[0] == -1, x2[0] == 2, x3[0] == -1, x1'[0] == 0, x2'[0] == 0, x3'[0] == 0}, {x1[t], x2[t], x3[t]}, t] // FullSimplify {{x1[t] -> (1/2)* ((-1 + Sqrt[2])* Cos[Sqrt[2 - Sqrt[2]]* t] - (1 + Sqrt[2])* Cos[Sqrt[2 + Sqrt[2]]* t]), x2[t] -> (1/2)* ((-(-2 + Sqrt[2]))* Cos[Sqrt[2 - Sqrt[2]]* t] + (2 + Sqrt[2])* Cos[Sqrt[2 + Sqrt[2]]* t]), x3[t] -> (1/2)* ((-1 + Sqrt[2])* Cos[Sqrt[2 - Sqrt[2]]* t] - (1 + Sqrt[2])* Cos[Sqrt[2 + Sqrt[2]]* t])}} Bob Hanlon On Wed, Apr 16, 2014 at 3:40 AM, Robert Jenkins <dale.jenkins8 at gmail.com>wrote: > The instruction > DSolve[{-2*x1[t] + x2[t] == x1''[t], -2*x2[t] + x1[t] == x2''[t], > x1[0] == -1, x2[0] == 2, x1'[0] == 0, x2'[0] == 0}, {x1, x2}, t] > produces a simple solution. But I am surprised to find the three-mass > version produces a mass of complication. Have I made a mistake? > DSolve[{-2*x1[t] + x2[t] == x1''[t], -2*x2[t] + x3[t] + x1[t] == > x2''[t], -2*x3[t] + x2[t] == x3''[t], x1[0] == -1, x2[0] == 2, > x3[0] == -1, x1'[0] == 0, x2'[0] == 0, x3'[0] == 0}, {x1, x2, x3}, > t] > >
- References:
- Three masses and four springs
- From: Robert Jenkins <dale.jenkins8@gmail.com>
- Three masses and four springs