Re: Three masses and four springs
- To: mathgroup at smc.vnet.net
- Subject: [mg132601] Re: Three masses and four springs
- From: Roland Franzius <roland.franzius at uos.de>
- Date: Thu, 17 Apr 2014 05:10:56 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <lilc5f$qlj$1@smc.vnet.net>
Am 16.04.2014 09:40, schrieb Robert Jenkins: > The instruction > DSolve[{-2*x1[t] + x2[t] == x1''[t], -2*x2[t] + x1[t] == x2''[t], > x1[0] == -1, x2[0] == 2, x1'[0] == 0, x2'[0] == 0}, {x1, x2}, t] > produces a simple solution. But I am surprised to find the three-mass version produces a mass of complication. Have I made a mistake? > DSolve[{-2*x1[t] + x2[t] == x1''[t], -2*x2[t] + x3[t] + x1[t] == > x2''[t], -2*x3[t] + x2[t] == x3''[t], x1[0] == -1, x2[0] == 2, > x3[0] == -1, x1'[0] == 0, x2'[0] == 0, x3'[0] == 0}, {x1, x2, x3}, > t] > Its not that complicated but it involves a root of a third order determinant for the eigenfrequency In[22]:= FullSimplify[{x1[t], x2[t], x3[t]} /. DSolve[{-2*x1[t] + x2[t] == x1''[t], -2*x2[t] + x3[t] + x1[t] == x2''[t], -2*x3[t] + x2[t] == x3''[t], x1[0] == -1, x2[0] == 2, x3[0] == -1, x1'[0] == 0, x2'[0] == 0, x3'[0] == 0}, {x1[t], x2[t], x3[t]}, t][[1]]] Out[22]= {1/ 2 ((-1 + Sqrt[2]) Cos[Sqrt[2 - Sqrt[2]] t] - (1 + Sqrt[2]) Cos[ Sqrt[2 + Sqrt[2]] t]), 1/2 (-(-2 + Sqrt[2]) Cos[Sqrt[2 - Sqrt[2]] t] + (2 + Sqrt[2]) Cos[ Sqrt[2 + Sqrt[2]] t]), 1/2 ((-1 + Sqrt[2]) Cos[Sqrt[2 - Sqrt[2]] t] - (1 + Sqrt[2]) Cos[ Sqrt[2 + Sqrt[2]] t])} -- Roland Franzius