Re: matrix manipulation
- To: mathgroup at smc.vnet.net
 - Subject: [mg132399] Re: matrix manipulation
 - From: Roland Franzius <roland.franzius at uos.de>
 - Date: Mon, 10 Mar 2014 04:36:13 -0400 (EDT)
 - Delivered-to: l-mathgroup@mail-archive0.wolfram.com
 - Delivered-to: l-mathgroup@wolfram.com
 - Delivered-to: mathgroup-outx@smc.vnet.net
 - Delivered-to: mathgroup-newsendx@smc.vnet.net
 - References: <lfeio3$5r1$1@smc.vnet.net>
 
Am 08.03.2014 09:01, schrieb dimanag78 at gmail.com:
> Hello to all.
>
> I have the following 6x6 matrix
>
> Table[Subscript[C, k, j][i], {k, 1, 6}, {j, 1, 6}]
>
> I want this matrix to be symmetric, that is,
> Subscript[C, k, j][i] = Subscript[C, j, k][i] for j != k.
>
> In other words I want the matrix
>
> {{Subscript[C, 1, 1][i], Subscript[C, 1, 2][i], Subscript[C, 1, 3][i],
>     Subscript[C, 1, 4][i], Subscript[C, 1, 5][i],
>    Subscript[C, 1, 6][i]}, {Subscript[C, 1, 2][i],
>    Subscript[C, 2, 2][i], Subscript[C, 2, 3][i], Subscript[C, 2, 4][i],
>     Subscript[C, 2, 5][i],
>    Subscript[C, 2, 6][i]}, {Subscript[C, 1, 3][i],
>    Subscript[C, 2, 3][i], Subscript[C, 3, 3][i], Subscript[C, 3, 4][i],
>     Subscript[C, 3, 5][i],
>    Subscript[C, 3, 6][i]}, {Subscript[C, 1, 4][i],
>    Subscript[C, 2, 4][i], Subscript[C, 3, 4][i], Subscript[C, 4, 4][i],
>     Subscript[C, 4, 5][i],
>    Subscript[C, 4, 6][i]}, {Subscript[C, 1, 5][i],
>    Subscript[C, 2, 5][i], Subscript[C, 3, 5][i], Subscript[C, 4, 5][i],
>     Subscript[C, 5, 5][i],
>    Subscript[C, 5, 6][i]}, {Subscript[C, 1, 6][i],
>    Subscript[C, 2, 6][i], Subscript[C, 3, 6][i], Subscript[C, 4, 6][i],
>     Subscript[C, 5, 6][i], Subscript[C, 6, 6][i]}}
>
>
> Thank you very much, in advance, for yor help.
>
Avoid C, its reserved.
Use more advanced procedures like Outer and  Array with Sort.
Outer[Sort[{#1,#2}]&, #, #]&[Range[6]]
gives you the Matrix of a list of sorted pairs of indices from Range 
which is of course symmetric.
(Outer[ ( Subscript[k, Sequence @@ Sort[{#1, #2}]] &), #, #] &)[
  Range[6]]
You can use this method directly in array contructions
A = Array[Subscript[k, Sequence @@ Sort[{#1, #2}]] &, {6, 6}]
If you have already an array A of expressions, you can symmetrize it later
B=1/2 (A+Transpose[A])
For compactness and shielding from simplifikations I prefer number 
strings as indizes
Array[Superscript[k,
         StringJoin @@ ToString /@ Sort[{#1, #2}]] &, {6, 6}]
-- 
Roland Franzius