Re: A negative volume!
- To: mathgroup at yoda.physics.unc.edu
- Subject: Re: A negative volume!
- From: ags at seaman.cc.purdue.edu (Dave Seaman)
- Date: Thu, 12 Mar 92 11:48:05 EST
"Roger B. Kirchner" <kirchner at cs.umn.edu> writes: >Let V be the volume of the solid inside the first octant of the unit >sphere and outside the cylinder with cylindrical equation r = Sin[t]. >Computing in cylindrical coordinates, > >In[1]:= Integrate[r, {z, 0, (1 - r^2)^(1/2)}] > > 2 >Out[1]= r Sqrt[1 - r ] > >In[2]:= Integrate[%, {r, Sin[t], 1}] > > 2 2 > Cos[t] Sqrt[Cos[t] ] >Out[2]= --------------------- > 3 > >In[3]:= Integrate[%, {t, 0, Pi/2}] > > 2 >Out[3]= -(-) > 9 > >Thus V = -2/9! > >Anybody have any suggestions on how to avoid this kind of problem? A change in the order of integration seems to do the trick. Mathematica 2.0 for NeXT Copyright 1988-91 Wolfram Research, Inc. -- NeXT graphics initialized -- In[1]:= Integrate[r,{r,Sin[t],Sqrt[1-z^2]}] 2 2 1 - z Sin[t] Out[1]= ------ - ------- 2 2 In[2]:= Integrate[%,{t,0,ArcCos[z]}] 2 (1 - 2 z ) ArcCos[z] Sin[2 ArcCos[z]] Out[2]= -------------------- + ---------------- 4 8 In[3]:= Integrate[%,{z,0,1}] 2 Out[3]= - 9 Dave Seaman