how can I do this in functional style?

*To*: mathgroup at christensen.cybernetics.net*Subject*: [mg916] how can I do this in functional style?*From*: drc at gauss.math.usf.edu (David Cabana)*Date*: Sun, 30 Apr 1995 03:50:40 -0400*Organization*: Univ. of South Florida, Math Department

Below I define a function, Classify[S_, f_], in an imperative (and not particularly efficient) style. Can anyone tell me how to define it either functionally or via pattern matching? The function Classify takes 2 arguments, f and S. f is a function, and S is a subset of the domain of S. In particular, S is a list of elements of the domain of f, and contains no repeated elements. The function f induces an equivalence relation on S as follows: a is equivalent to b modulo f if and only if f[a] == f[b]. Classify returns the equivalence classes of S modulo f. In[1]:= Classify[S_, f_]:= Module[ {values, partition, len, index}, len = Length[S]; partition = Table[{}, {len}]; values = Map[f,S]; Do[ index = First[Flatten[Position[values, values[[i]]]]]; partition[[index]] = Prepend[partition[[index]], S[[i]]], {i, 1, len} ]; (* remove any empty lists from partition *) Select[partition, (#!={})&] ] Here are some examples: In[2]:= Classify[{-1,-2,1,2,3,4,5}, Positive] Out[2]= {{-2, -1}, {5, 4, 3, 2, 1}} In[3]:= Classify[{-1,-2,1,2,3,4,5}, EvenQ] Out[3]= {{5, 3, 1, -1}, {4, 2, -2}} In[4]:= square[x_]:= x x In[5]:=Classify[{-1,-2,1,2,3,4,5}, square] Out[5]={{1, -1}, {2, -2}, {3}, {4}, {5}} In[6]:= cube[x_] := x x x In[7]:= Classify[{-1,-2,1,2,3,4,5}, cube] Out[7]= {{-1}, {-2}, {1}, {2}, {3}, {4}, {5}}