[Date Index]
[Thread Index]
[Author Index]
how can I do this functionally?
*To*: mathgroup at christensen.cybernetics.net
*Subject*: [mg913] how can I do this functionally?
*From*: drc at gate.net (David Cabana)
*Date*: Sun, 30 Apr 1995 03:47:38 -0400
Below I define a function, Classify[S_, f_], in an imperative (and
not particularly efficient) style. Can anyone tell me how to define
it either functionally or via pattern matching?
The function Classify takes 2 arguments, f and S. f is a function,
and S is a subset of the domain of S. In particular, S is a list
of elements of the domain of f, and contains no repeated elements.
The function f induces an equivalence relation on S as follows:
a is equivalent to b modulo f if and only if f[a] == f[b]. Classify
returns the equivalence classes of S modulo f.
In[1]:=
Classify[S_, f_]:=
Module[
{values, partition, len, index},
len = Length[S];
partition = Table[{}, {len}];
values = Map[f,S];
Do[
index = First[Flatten[Position[values, values[[i]]]]];
partition[[index]] = Prepend[partition[[index]], S[[i]]],
{i, 1, len}
];
(* remove any empty lists from partition *)
Select[partition, (#!={})&]
]
Here are some examples:
In[2]:= Classify[{-1,-2,1,2,3,4,5}, Positive]
Out[2]= {{-2, -1}, {5, 4, 3, 2, 1}}
In[3]:= Classify[{-1,-2,1,2,3,4,5}, EvenQ]
Out[3]= {{5, 3, 1, -1}, {4, 2, -2}}
In[4]:= square[x_]:= x x
In[5]:=Classify[{-1,-2,1,2,3,4,5}, square]
Out[5]={{1, -1}, {2, -2}, {3}, {4}, {5}}
In[6]:= cube[x_] := x x x
In[7]:= Classify[{-1,-2,1,2,3,4,5}, cube]
Out[7]= {{-1}, {-2}, {1}, {2}, {3}, {4}, {5}}
David Cabana drc at gate.net
Prev by Date:
**Re: How use the Union function (MMA v.2,2 on PC )?**
Next by Date:
**how can I do this in functional style?**
Previous by thread:
**Re: Eigensystem**
Next by thread:
**how can I do this in functional style?**
| |