Definite integral difficulty
- To: mathgroup at christensen.cybernetics.net
- Subject: [mg1707] Definite integral difficulty
- From: sergio at shark.inst.bnl.gov (Sergio Rescia)
- Date: Mon, 17 Jul 1995 04:44:33 -0400
math #:L1030-9293 I was trying to solve the integral: In[1]:= Integrate[Sin[u]^2 (Sin[x u]/(x u))^4,{u,0,Infinity}] //Simplify 2 Pi (-1 + 2 Sqrt[x ]) Out[1]= -------------------- 4 8 x The result is WRONG, since the integrand is always positive, so the integral must be positive for any x. A workaround is to split the integral: In[2]:= int1=Integrate[(Sin[x u]/(x u))^4,{u,0,Infinity}] 2 Pi Sqrt[x ] Out[2]= If[Im[x] == 0, -----------, ComplexInfinity] 2 3 x In[3]:= int2=Integrate[Cos[u]^2 (Sin[x u]/(x u))^4,{u,0,Infinity}] Out[3]= If[Im[2 - 4 x] == 0 && Im[2 - 2 x] == 0 && Im[x] == 0 && > Im[2 + 2 x] == 0 && Im[2 + 4 x] == 0, 2 2 > (Pi (6 - 4 Sqrt[(-1 + x) ] + 8 Sqrt[(-1 + x) ] x - 2 2 2 2 2 > 4 Sqrt[(-1 + x) ] x + 8 x Sqrt[x ] - 4 Sqrt[(1 + x) ] - 2 2 2 2 > 8 x Sqrt[(1 + x) ] - 4 x Sqrt[(1 + x) ] + Sqrt[(-1 + 2 x) ] - 2 2 2 2 > 4 x Sqrt[(-1 + 2 x) ] + 4 x Sqrt[(-1 + 2 x) ] + Sqrt[(1 + 2 x) ] + 2 2 2 4 > 4 x Sqrt[(1 + 2 x) ] + 4 x Sqrt[(1 + 2 x) ])) / (48 x ), > ComplexInfinity] Since my x is real positive I ca also: In[4]:= p1=(Pi*(x^2)^(1/2))/(3*x^2) /. Sqrt[x_^2]->x //Simplify Pi Out[4]= --- 3 x In[6]:= p2= (Pi*(6 - 4*((-1 + x)^2)^(1/2) + 8*((-1 + x)^2)^(1/2)*x - 4*((-1 + x)^2)^(1/2)*x^2 + 8*x^2*(x^2)^(1/2) - 4*((1 + x)^2)^(1/2) - 8*x*((1 + x)^2)^(1/2) - 4*x^2*((1 + x)^2)^(1/2) + ((-1 + 2*x)^2)^(1/2) - 4*x*((-1 + 2*x)^2)^(1/2) + 4*x^2*((-1 + 2*x)^2)^(1/2) + ((1 + 2*x)^2)^(1/2) + 4*x*((1 + 2*x)^2)^(1/2) + 4*x^2*((1 + 2*x)^2)^(1/2)))/(48*x^4) /. {((-1+x)^2)^(1/2)->Abs[-1+x], ((-1+2 x)^2)^(1/2)->Abs[-1+2 x], ((1+x)^2)^(1/2)->(1+x), ((1+2 x)^2)^(1/2)->(1+2 x), Sqrt[x^2]->x} //Simplify In[7]:= res=p1 - p2 //Simplify Out[7]= (Pi (-3 + 6 x + 4 x + 4 Abs[-1 + x] - 8 x Abs[-1 + x] + 2 > 4 x Abs[-1 + x] - Abs[-1 + 2 x] + 4 x Abs[-1 + 2 x] - 2 4 > 4 x Abs[-1 + 2 x])) / (48 x ) and by further manipulation, more easily done on paper (at least for me!): In[8]:= res2=Pi/(48 x^2) ( (4*x^3 + 6 x -3) + 4*Abs[x - 1]^3 - Abs[ 2*x - 1]^3) 3 3 3 Pi (-3 + 6 x + 4 x + 4 Abs[-1 + x] - Abs[-1 + 2 x] ) Out[8]= ------------------------------------------------------ 2 48 x It is not the first time I am facing problems with definite integrals. Can you shed some light? Regards, Sergio Rescia ------------------------------------- Reply to : Sergio Rescia Brookhaven National Laboratory Instrumentation Division - Bld 535B UPTON, NY 11973-5000 - U.S.A. E-mail: Rescia at bnl.gov (Internet) Rescia@bnl (Bitnet) BNL::RESCIA (DECNET) Fax: 516-282-5773 -------------------------------------