Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
1995
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1995

[Date Index] [Thread Index] [Author Index]

Search the Archive

Mathematica 2.2.3 under Win95

  • Subject: [mg2260] Mathematica 2.2.3 under Win95
  • From: bueno at ifi.unicamp.br (Marcelo de Almeida Bueno - pos)
  • Date: Thu, 19 Oct 1995 05:32:47 GMT
  • Approved: usenet@wri.com
  • Distribution: local
  • Newsgroups: wri.mathgroup
  • Organization: Wolfram Research, Inc.
  • Sender: daemon at wri.com ( )

Dear MathGroupers,

      I have recently sent to Karl the results of my benchmarks running
Mathematica 2.2.3 under Windows for Workgroups (WFW) 3.11. Now, I run the
same benchtests with Mathematica 2.2.3 under Windows 95 (W95). I report
bellow the two results, and ask someone to explain me how can WFW 3.11 be
faster than W95?

*************************************
      Math 2.2.3 under WFW 3.11:
*************************************

Timing[N[Sin[1/2],2500]][[1]]
7.25 Second

Timing[N[Pi,10001]][[1]]
10.82 Second

Timing[10001!][[1]]
7.58 Second

First[Timing[Eigenvalues[Table[Random[],{200},{200}]]]]
22.3 Second

f[x_]:= 4x-4x^2;
Timing[ Nest[f,0.6,5000]][[1]]
6.538 Second

f[x_]:= BesselJ[0,x];
Timing[Nest[f,0.6,2500]][[1]]
13.786 Second

kdv[q_]:=  D[q,t]  - 1/4  D[q,{x,3}] -3/2 q D[q,x]
q3:= (-5*E^((11*t)/8) - 45*E^(2*x) - 18*E^((11*t)/16 + x) +
     162*E^((3*t)/2 + 2*x) - 188*E^((13*t)/16 + 3*x) +
     162*E^(t/8 + 4*x) - 45*E^((13*t)/8 + 4*x) -
     18*E^((15*t)/16 + 5*x) - 5*E^(t/4 + 6*x))/
    (8*(-E^((11*t)/16) + 3*E^x - 3*E^((13*t)/16 + 2*x) +
       E^(t/8 + 3*x))^2)
Timing[Simplify[kdv[q3]]]
{52.508 Second, 0}

********************************* 
      Math 2.2.3 under W95:
*********************************

Timing[N[Sin[1/2],2500]][[1]]
15.029 Second

Timing[N[Pi,10001]][[1]]
27.115 Second

Timing[10001!][[1]]
21.048 Second

First[Timing[Eigenvalues[Table[Random[],{200},{200}]]]]
47.212 Second

f[x_]:= 4x-4x^2;
Timing[ Nest[f,0.6,5000]][[1]]
13.108 Second

f[x_]:= BesselJ[0,x];
Timing[Nest[f,0.6,2500]][[1]]
29.512 Second

kdv[q_]:=  D[q,t]  - 1/4  D[q,{x,3}] -3/2 q D[q,x]
q3:= (-5*E^((11*t)/8) - 45*E^(2*x) - 18*E^((11*t)/16 + x) +
     162*E^((3*t)/2 + 2*x) - 188*E^((13*t)/16 + 3*x) +
     162*E^(t/8 + 4*x) - 45*E^((13*t)/8 + 4*x) -
     18*E^((15*t)/16 + 5*x) - 5*E^(t/4 + 6*x))/
    (8*(-E^((11*t)/16) + 3*E^x - 3*E^((13*t)/16 + 2*x) +
       E^(t/8 + 3*x))^2)
Timing[Simplify[kdv[q3]]]
{110.971 Second, 0}


         The two benchtests run on a motherboard SOYO with 256k
cache, Intel's DX4 100 MHz and 40 M RAM.
         A big hug,

     _/_/  _/_/_/_/_/_/_/_/_/   | Department of Cosmic Rays and Chronology
    _/ _/_/ _/      _/      _/  | Institute of Physics "Gleb Wataghin"
   _/  _/  _/_/_/_/_/_/_/_/     | State University of Campinas, UNICAMP
  _/      _/      _/      _/    | 13083-970 Campinas, Sao Paulo, Brazil
 _/      _/      _/      _/     | e-mail:    bueno at ifi.unicamp.br
_/      _/      _/_/_/_/        | home page: http://www.ifi.unicamp.br/~bueno
                                | Tel.: (+55) (192) 398112 or 300646
Marcelo de Almeida Bueno        | FAX:  (+55) (192) 393127 or 300646




                                 
    
   


  • Prev by Date: Re: Formating output of Modules
  • Next by Date: Re: Mathematica and Win 95
  • Previous by thread: Re: Puzzle
  • Next by thread: Mathematica 2.2.3 under Win95