Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
1996
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1996

[Date Index] [Thread Index] [Author Index]

Search the Archive

MATHEMATICA - MAPLE Converter MapleForm 2.0 available

  • To: mathgroup at smc.vnet.net
  • Subject: [mg3737] MATHEMATICA - MAPLE Converter MapleForm 2.0 available
  • From: juergen.schmidt at math.uni-giessen.de (Juergen Schmidt)
  • Date: Sun, 14 Apr 1996 03:00:17 -0400
  • Organization: Institut für Mathematische Physik
  • Sender: owner-wri-mathgroup at wolfram.com

Conversion MATHEMATICA - MAPLE available at 


               http://www.uni-giessen.de/www-Mathematische-Physik/
               

Completey revised version MapleForm 2.00 beta (15.03.1996)



* Translation of no less than 280 MATHEMATICA commands into MAPLE syntax! 

* Full support of operators and differential equations and many more!

* Conversion of non-evaluated expressions: excellent for comparism of results!

* Additionally designed for learning MAPLE syntax!

* With a detailed manual (for PC as notebook, for UNIX as PostScript file)!



Some examples:


In[1]   DSolve[f''[x] + x^2 f'''[x]^3 == Cos[x], f[x], x] //MapleFormH

Out[1]	dsolve((D@@2)(f)(x) + x^2*(D@@3)(f)(x)^3 = cos(x), f(x));

 
In[2]	D[f[x,y,z], {z,i}, x, {y,12}] //MapleFormH
      
Out[2]	diff(f(x, y, z), z$i, x, y$12);


In[3] 	NDSolve[{f''[x] + f'[x] == x^2, f'[0] == 0, 
                                    f[0] == 1}, f[x], {x,0,3}]//MapleFormH
                 
Out[3] 	dsolve([D(f)(x) + (D@@2)(f)(x) = x^2, D(f)(0) = 0, f(0) = 1], f(x), 
                                                                 type = numeric);

In[4]   Integrate[x*y*z, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]//MapleFormH
            
Out[4]	int(int(int('x'*'y'*'z', 'z' = 0..1), 'y' = 0..1), 'x' = 0..1);


In[5]   s[[2,5,1]] //MapleFormH
            
Out[5]	op(1, op(5, op(2, s)));


In[6]   (#1^2 + #3^2 &) //MapleForm
               
Out[6]	((slot1, slot2, slot3) -> slot1^2 + slot3^2);


In[7]	InverseFunction[F]//MapleForm
            
Out[7]	(F@@(-1));


In[8]	(  F[x_] := F[x] = Module[{r}, r = x^2; r + r^2 ]  )//MapleFormH
      
Out[8] 	F := proc(x) local r: option remember: r := x^2: r + r^2 end;


In[9]	Table[x, {5}, {5}] //MapleFormH		
       
Out[9]  [[x$5]$5];


In[10]	Eigensystem[ {{a,b}, {c,d}} . {r,s} ] //MapleFormH	
       
Out[10] linalg[eigenvects](linalg[innerprod](
		linalg[matrix]([[a, b], [c, d]]),
			linalg[vector]([r, s])));




		  "I do not know 
		      	   if this would 
		            	  have been possible 
		                  	the other way 
			                     	round in MAPLE!?"




Dipl.-Phys. Juergen Schmidt            
 -------------------------------------------------------- 
  Mathematisches Institut (Math. Physik)       
   der Justus-Liebig-Universitaet Giessen   
    Arndtstr. 2                           
     D-35392 Giessen                     
      Tel. +49 641 702-2542 (-2548 Fax /-2535 Secr.)
       http://www.uni-giessen.de/www-Mathematische-Physik/
      --------------------------------------------------------

==== [MESSAGE SEPARATOR] ====


  • Prev by Date: Re: Mathematica: should I move to Windows from X?
  • Next by Date: Monty Hall
  • Previous by thread: Please help me : Communication between mathematica and other Windows programs.
  • Next by thread: Monty Hall