MATHEMATICA - MAPLE Converter MapleForm 2.0 available

• To: mathgroup at smc.vnet.net
• Subject: [mg3737] MATHEMATICA - MAPLE Converter MapleForm 2.0 available
• From: juergen.schmidt at math.uni-giessen.de (Juergen Schmidt)
• Date: Sun, 14 Apr 1996 03:00:17 -0400
• Organization: Institut für Mathematische Physik
• Sender: owner-wri-mathgroup at wolfram.com

```Conversion MATHEMATICA - MAPLE available at

http://www.uni-giessen.de/www-Mathematische-Physik/

Completey revised version MapleForm 2.00 beta (15.03.1996)

* Translation of no less than 280 MATHEMATICA commands into MAPLE syntax!

* Full support of operators and differential equations and many more!

* Conversion of non-evaluated expressions: excellent for comparism of results!

* Additionally designed for learning MAPLE syntax!

* With a detailed manual (for PC as notebook, for UNIX as PostScript file)!

Some examples:

In[1]   DSolve[f''[x] + x^2 f'''[x]^3 == Cos[x], f[x], x] //MapleFormH

Out[1]	dsolve((D@@2)(f)(x) + x^2*(D@@3)(f)(x)^3 = cos(x), f(x));

In[2]	D[f[x,y,z], {z,i}, x, {y,12}] //MapleFormH

Out[2]	diff(f(x, y, z), z\$i, x, y\$12);

In[3] 	NDSolve[{f''[x] + f'[x] == x^2, f'[0] == 0,
f[0] == 1}, f[x], {x,0,3}]//MapleFormH

Out[3] 	dsolve([D(f)(x) + (D@@2)(f)(x) = x^2, D(f)(0) = 0, f(0) = 1], f(x),
type = numeric);

In[4]   Integrate[x*y*z, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]//MapleFormH

Out[4]	int(int(int('x'*'y'*'z', 'z' = 0..1), 'y' = 0..1), 'x' = 0..1);

In[5]   s[[2,5,1]] //MapleFormH

Out[5]	op(1, op(5, op(2, s)));

In[6]   (#1^2 + #3^2 &) //MapleForm

Out[6]	((slot1, slot2, slot3) -> slot1^2 + slot3^2);

In[7]	InverseFunction[F]//MapleForm

Out[7]	(F@@(-1));

In[8]	(  F[x_] := F[x] = Module[{r}, r = x^2; r + r^2 ]  )//MapleFormH

Out[8] 	F := proc(x) local r: option remember: r := x^2: r + r^2 end;

In[9]	Table[x, {5}, {5}] //MapleFormH

Out[9]  [[x\$5]\$5];

In[10]	Eigensystem[ {{a,b}, {c,d}} . {r,s} ] //MapleFormH

Out[10] linalg[eigenvects](linalg[innerprod](
linalg[matrix]([[a, b], [c, d]]),
linalg[vector]([r, s])));

"I do not know
if this would
have been possible
the other way
round in MAPLE!?"

Dipl.-Phys. Juergen Schmidt
--------------------------------------------------------
Mathematisches Institut (Math. Physik)
der Justus-Liebig-Universitaet Giessen
Arndtstr. 2
D-35392 Giessen
Tel. +49 641 702-2542 (-2548 Fax /-2535 Secr.)
http://www.uni-giessen.de/www-Mathematische-Physik/
--------------------------------------------------------

==== [MESSAGE SEPARATOR] ====

```

• Prev by Date: Re: Mathematica: should I move to Windows from X?
• Next by Date: Monty Hall