MATHEMATICA - MAPLE Converter MapleForm 2.0 available
- To: mathgroup at smc.vnet.net
- Subject: [mg3737] MATHEMATICA - MAPLE Converter MapleForm 2.0 available
- From: juergen.schmidt at math.uni-giessen.de (Juergen Schmidt)
- Date: Sun, 14 Apr 1996 03:00:17 -0400
- Organization: Institut für Mathematische Physik
- Sender: owner-wri-mathgroup at wolfram.com
Conversion MATHEMATICA - MAPLE available at
http://www.uni-giessen.de/www-Mathematische-Physik/
Completey revised version MapleForm 2.00 beta (15.03.1996)
* Translation of no less than 280 MATHEMATICA commands into MAPLE syntax!
* Full support of operators and differential equations and many more!
* Conversion of non-evaluated expressions: excellent for comparism of results!
* Additionally designed for learning MAPLE syntax!
* With a detailed manual (for PC as notebook, for UNIX as PostScript file)!
Some examples:
In[1] DSolve[f''[x] + x^2 f'''[x]^3 == Cos[x], f[x], x] //MapleFormH
Out[1] dsolve((D@@2)(f)(x) + x^2*(D@@3)(f)(x)^3 = cos(x), f(x));
In[2] D[f[x,y,z], {z,i}, x, {y,12}] //MapleFormH
Out[2] diff(f(x, y, z), z$i, x, y$12);
In[3] NDSolve[{f''[x] + f'[x] == x^2, f'[0] == 0,
f[0] == 1}, f[x], {x,0,3}]//MapleFormH
Out[3] dsolve([D(f)(x) + (D@@2)(f)(x) = x^2, D(f)(0) = 0, f(0) = 1], f(x),
type = numeric);
In[4] Integrate[x*y*z, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]//MapleFormH
Out[4] int(int(int('x'*'y'*'z', 'z' = 0..1), 'y' = 0..1), 'x' = 0..1);
In[5] s[[2,5,1]] //MapleFormH
Out[5] op(1, op(5, op(2, s)));
In[6] (#1^2 + #3^2 &) //MapleForm
Out[6] ((slot1, slot2, slot3) -> slot1^2 + slot3^2);
In[7] InverseFunction[F]//MapleForm
Out[7] (F@@(-1));
In[8] ( F[x_] := F[x] = Module[{r}, r = x^2; r + r^2 ] )//MapleFormH
Out[8] F := proc(x) local r: option remember: r := x^2: r + r^2 end;
In[9] Table[x, {5}, {5}] //MapleFormH
Out[9] [[x$5]$5];
In[10] Eigensystem[ {{a,b}, {c,d}} . {r,s} ] //MapleFormH
Out[10] linalg[eigenvects](linalg[innerprod](
linalg[matrix]([[a, b], [c, d]]),
linalg[vector]([r, s])));
"I do not know
if this would
have been possible
the other way
round in MAPLE!?"
Dipl.-Phys. Juergen Schmidt
--------------------------------------------------------
Mathematisches Institut (Math. Physik)
der Justus-Liebig-Universitaet Giessen
Arndtstr. 2
D-35392 Giessen
Tel. +49 641 702-2542 (-2548 Fax /-2535 Secr.)
http://www.uni-giessen.de/www-Mathematische-Physik/
--------------------------------------------------------
==== [MESSAGE SEPARATOR] ====