Re: Map Attractors in Mathematica

• Subject: [mg3135] Re: Map Attractors in Mathematica
• From: pnardon at ulb.ac.be (Pasquale Nardone)
• Date: 7 Feb 1996 10:40:39 -0600
• Approved: usenet@wri.com
• Distribution: local
• Newsgroups: wri.mathgroup
• Organization: Université Libre de Bruxelles
• Sender: daemon at wri.com

```suppose that you have a starting function in 2 dimension
f[x_,y_]:=....
you can then define the recursive mapping by:

g[{x_,y_},n_]:=g[Mod[{x+y,x+2*y},1],n-1];
g[{x_,y_},0]:=f[x,y];

and then use the DensityPlot to see what happens:

DensityPlot[g[{x,y},5],{x,0,1},{y,0,1},PlotPoints->30]

(for example this is the 5 iterate)

For the f[x_,y_] you can define it mathematically
i.e.
f[x_,y_]=If[((x-0.5)^2+(y-0.5)^2<0.1),1,0]

or, if you have a bitmap object, for example on my Mac I use
a "icon" (a 32x32 bitmap with a "smile"):

AFile="2G:smile";
data=Partition[data,32];
Show[DensityGraphics[1-data/255,ColorFunction->(Hue[1-#,1-#,1]&)]];

(* this is the starting image *)

f[x_,y_]:=Transpose[data][[Floor[31*x+1],Floor[-31*y+32]]];

DensityPlot[f[x,y],{x,0,1},{y,0,1},PlotPoints->32];

(*this define a 2 dimension function which correspond to
the bitmap *)

--
--------------------------------------------
Pasquale Nardone                          *
*
Universiti Libre de Bruxelles             *
CP 231, Sciences-Physique                 *
Bld du Triomphe                           *
1050 Bruxelles, Belgium                   *
tel: 650,55,15 fax: 650,57,67 (+32,2)     *
,,,
(o o)
----ooO-(_)-Ooo----

```

• Prev by Date: Mathematica 3D graphics to VRML converter
• Next by Date: Mathematica 3D graphics to VRML converter
• Previous by thread: Re: Map Attractors in Mathematica
• Next by thread: Names of MathLink libraries on different Unix platforms