MathGroup Archive 1996

[Date Index] [Thread Index] [Author Index]

Search the Archive

Polynomial problems.


	I have a set of orthogonal polynomials in x,y,z, which is 
Gram-Scmidt orthogonalized with respect to integration over the unit 
sphere.
	1. How can I generate a C function to compute my polynomials?
(Prototype double mypoly(double x,double y, double z,int index)).
	2. How can I find a set of sampling points and weights to compute
the scalar products with respect to a function I wan't to approximate.
I'm seeking an optimal set of points.
	3. The scalar product used is computationally very expensive.
Is there any way to optimize the Gram-Smidt orthogonalization operator,
to allow computing higher order polynomials in a reasonable time.
(Scalar product is similar to this two-dimensional example:
Integrate[(#1 #2)/.{x->r Cos[fi], y-> r Sin[fi]}*r,{r,0,1},{fi,0,2Pi}]&)
-- 
-------------------------------------------------------------------------
Tommy Nordgren                    "Home is not where you are born,
Royal Institute of Technology      but where your heart finds peace."
Stockholm                         Tommy Nordgren - The dying old crone
f85-tno at nada.kth.se         						  
--------------------------------------------------------------------------

==== [MESSAGE SEPARATOR] ====


  • Prev by Date: Re: How can this MapAt application be done more efficiently
  • Next by Date: Re: How can this MapAt application be done more efficiently
  • Previous by thread: Nonlinear Fit ... Errors and covariance.
  • Next by thread: Position[] pattern matching