Re: Functional programming; Outer; NonlinearFit

*To*: mathgroup at smc.vnet.net*Subject*: [mg4156] Re: Functional programming; Outer; NonlinearFit*From*: rhall2 at umbc.edu (hall robert)*Date*: Sat, 8 Jun 1996 13:23:52 -0400*Organization*: University of Maryland, Baltimore County*Sender*: owner-wri-mathgroup at wolfram.com

In article <4p35q5$n9o at dragonfly.wolfram.com>, vvs124 <vvs124 at rsphy1.anu.edu.au> wrote: >First - I want to renormalize the list d >d := {1, 2, 3, 4} > >according to the rule >Renorm[{S_, P_, N0_}] = d/b > >where >b := (1+S)^(P/2)/(Sqrt[N0]). > >Parameters S, P and N0 are defined in the >ParamList := {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}} > >each set {S, P, N0} corresponding to the respective value of d in the >list. Try In[5]:= d = {1, 2, 3, 4}; ParamList = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}; b := (1+#1)^(#2/2) / Sqrt[#3] &; d / Apply[b, ParamList, 2] Out[8]= 6 3 2 Sqrt[-] 8 Sqrt[--] Sqrt[3] 5 9 11 {-------, ---------, ----, ----------} 2 25 4096 161051 Division is a variant of Times[], which is listable. Once you have two lists of values, just divide one list by the other, e.g. In[13]:= {1, 2, 3} / {x, y, z} Out[13]= 1 2 3 {-, -, -} x y z -- Bob Hall | "Know thyself? Absurd direction! rhall2 at gl.umbc.edu | Bubbles bear no introspection." -Khushhal Khan Khatak ==== [MESSAGE SEPARATOR] ====