Innacurate Solve results
- To: mathgroup at smc.vnet.net
- Subject: [mg4029] Innacurate Solve results
- From: Mark Van de Vyver <mvyver at ecel.uwa.edu.au>
- Date: Mon, 20 May 1996 02:15:02 -0400
- Organization: Dept. Acc. and Fin., Uni. of Western Aust, Perth, 6907
- Sender: owner-wri-mathgroup at wolfram.com
Hi, I'm battling with Solve and the following problem. The Problem is set up in mma as follows: In[1] Clear[ m, v, X0, ximageB, ximageC, A, imagestrength, q1, q] q1[x0_,x_,t_]:=(2 Pi t)^(-1/2) Exp[-(x-x0-m t)^2 (2 t v)^-1] a[t_]:=1/2 - t*Log[1/4 + (E^(-t^(-1)))^(1/2)/2^(1/2)] t=1; m=0; v=1; X0=0; ximageB=1; ximageC=2; A=1; (* imagestrength=1/2; *) In[2] Solve[ {q[x, t]==A q1[X0, x, t] + imagestrength q1[ximageB, x, t] + imagestrength q1[ximageC, x, t], A q1[X0, x, 0] + imagestrength q1[ximageB, x, 0] + imagestrength q1[ximageC, x, 0]==DiracDelta[x], A q1[X0, a[t], t] + imagestrength q1[ximageB, a[t], t] + imagestrength q1[ximageC, a[t], t]==0}, { q[x,t], imagestrength}]//Simplify The result mma gives is close but v. innacurate and v. messy. For example applying //N to imagestrength gives -0.44.... It should be -0.5. Further more q[x,t] should be the same as g[y_, t_]=( (2 Pi t)^(-1/2) ) (Exp[-(y^2)/(2t)]-(1/2) Exp[-((y-1)^2)/(2t)]-(1/2)Exp[-((y-2)^2)/(2t)]) Ploting q and g will make clear how large the problem is and that whatever mma is doing wrong grows as x does. Can anyone point me the problem out to me, or where I might find a solution. Thanks in advance Mark -- Mark Van de Vyver _____________________________________________________________________________ Mark Van de Vyver Department of Accounting and Finance Phone: (61) (09) 380-2510 University of Western Australia Fax: (61) (09) 380-1047 Nedlands 6907 e-mail: mvyver at ecel.uwa.edu.au Perth _____________________________________________________________________________ ==== [MESSAGE SEPARATOR] ====