Re: Single Problem
- To: mathgroup at smc.vnet.net
- Subject: [mg5322] Re: Single Problem
- From: haberndt at dnai.com (Harald Berndt)
- Date: Wed, 27 Nov 1996 01:47:38 -0500
- Organization: DNAI ( Direct Network Access )
- Sender: owner-wri-mathgroup at wolfram.com
In article <5764ab$28t at dragonfly.wolfram.com>, Redirley Matheus Santos <yelride at ibm.net> wrote: > Hi everybody, > > Who would like solve this problem ? > > X is a Integer number > X = Sqr(6+(Sqr(6+(Sqr(6+Sqr(6+Sqr(...))))))) infinite Sqr of 6 inside > X = ? Do you really mean Sqr? If I read your problem correctly, you want something like In[17]:= NestList[(6+#)^2&, x, 3] Out[17]= 2 2 2 2 2 2 {x, (6 + x) , (6 + (6 + x) ) , (6 + (6 + (6 + x) ) ) } ... and that grows to infinity really fast: In[20]:= NestList[(6+#)^2&, 1, 3] Out[20]= {1, 49, 3025, 9186961} In[21]:= NestList[(6+#)^2&, .1, 3] Out[21]= 6 {0.1, 37.21, 1867.1, 3.50852 10 } Out[22]= -16 6 {1. 10 , 36., 1764., 3.1329 10 } In[24]:= $MachineEpsilon Out[24]= -19 1.0842 10 In[25]:= NestList[(6+#)^2&, $MachineEpsilon, 3] Out[25]= -19 6 {1.0842 10 , 36., 1764., 3.1329 10 } It's quite different for the square root, as one can demonstrate with In[31]:= ListPlot[ NestList[Sqrt[6+#]&, 1., 30], PlotRange -> All ]; To find that level off "limit", apply In[32]:= FixedPoint[Sqrt[6+#]&, 1.] Out[32]= 3. In[33]:= FixedPoint[Sqrt[6+#]&, $MachineEpsilon] Out[33]= 3. Best, -- Harald Berndt, Ph.D. Research Specialist, Voice: 510-652-5974 Consultant FAX: 510-215-4299