Services & Resources / Wolfram Forums
MathGroup Archive
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1997

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: y=f(t) vs t=f(y)

  • To: mathgroup at
  • Subject: [mg6305] Re: [mg6267] y=f(t) vs t=f(y)
  • From: "w.meeussen" <w.meeussen.vdmcc at>
  • Date: Sat, 8 Mar 1997 00:26:28 -0500 (EST)
  • Sender: owner-wri-mathgroup at

At 09:49 6-03-97 -0500, Larry Smith wrote:
>     I would appreciate anyone helping me with using Mathematica to solve 
>     the following (geometrically, numerically, etc)
>     I need to find an example of a function y=f(t) such that f'(0)=1 but t 
>     is not a function of y in any neighborhood of 0.  I just arbitrarily 
>     picked f'(0)=1 you could pick something with value of 1. But the trick 
>     is that t is not a function of y in this neighborhood.  Any 
>     suggestions?
>     Larry
>     larry.smith at
>     or 
>     lsmith at
>     601-939-8555 ext 255
hm, what about:


make a plot, Plot[t[x],{x,-2,2}], and you see that
the inverse function is:


and there you have it : the flat piece for x[t] between t=-1 and t=1
causes the function x[t] to be independent on t in that area.

Look at it again, and enjoy...
(whoever gave u this problem deserves a prize for didactics, it's a gem)


Dr. Wouter L. J. MEEUSSEN
eu000949 at
w.meeussen.vdmcc at

  • Prev by Date: Re: NIntegrate with variable region
  • Next by Date: Re: Generating lists of normally-distributed numbers?
  • Previous by thread: Re: y=f(t) vs t=f(y)
  • Next by thread: Re: Re: y=f(t) vs t=f(y)