Re: Problem with Integrate
- To: mathgroup at smc.vnet.net
- Subject: [mg9471] Re: [mg9423] Problem with Integrate
- From: "W. Meeussen" <w.meeussen.vdmcc at vandemoortele.be>
- Date: Thu, 6 Nov 1997 02:40:14 -0500
- Sender: owner-wri-mathgroup at wolfram.com
hi Pedro, make a plot of the imaginary & real part of your function; then you will see the divergence at x->1 and x->0. So you could break up the integration in three parts: In[106]:= Integrate[Exp[-I w x] (1-Exp[I w])/w,{x,-\[Infinity],0},Assumptions->{Im[w]== 0}] Out[106]= I - I Cos[w] + Sin[w] --------------------- 2 w In[107]:= Integrate[Exp[-I w x] (1-Exp[I w])/w,{x,0,1},Assumptions->{Im[w]==0}] Out[107]= 2 2 -I (1 - 2 Cos[w] + Cos[w] + Sin[w] ) ------------------------------------- 2 w In[108]:= Integrate[Exp[-I w x] (1-Exp[I w])/w,{x,1,\[Infinity]},Assumptions->{Im[w]== 0}] Out[108]= 2 2 I (-Cos[w] + Cos[w] + I Sin[w] + Sin[w] ) ------------------------------------------ 2 w Add them, FullSimplify it, and you get 0, (zero, rien, ingenting, niks, nada, zip). So much for all your trouble, getting "nothing". have fun too, wouter. At 01:56 5-11-97 -0500, Pedro A Santos wrote: >Hello, > >I hope somebody can help me with a problem: > >When I try to use Integrate as > >In[1]= Integrate[Exp[-I*w*x]*(1-Exp[I*w])/w,{w,-Infinity, Infinity}] > >I get the answer > >\!\(\* > RowBox[{ > \(Integrate::"idiv"\), \( : \ \), > "\<"Integral of \!\(\(E\^\(\(-I\)\\ w\\ x\)\\ \((1 - E\^\(I\\ >w\))\)\)\/w\ >\) does not converge on \!\({\*InterpretationBox[\(-\\[Infinity]\), \ >DirectedInfinity[-1]], \*InterpretationBox[\"\\[Infinity]\", \ >DirectedInfinity[1]]}\)."\>"}]\) > >Even if I put the option PrincipalValue -> True. But if I write > >In[2]= InverseFourierTransform[(1-Exp[I*w])/w,w,x] > >I get the correct answer > >Out[2]= \!\(\(-I\)\ UnitStep[1 - x, ZeroValue \[Rule] 1\/2] + > I\ UnitStep[\(-x\), ZeroValue \[Rule] 1\/2]\). > >Does somebody know why this happens? Thanks > > >Pedro Santos > > Dr. Wouter L. J. MEEUSSEN w.meeussen.vdmcc at vandemoortele.be eu000949 at pophost.eunet.be