Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
1997
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1997

[Date Index] [Thread Index] [Author Index]

Search the Archive

TensorRank

  • To: mathgroup at smc.vnet.net
  • Subject: [mg8977] TensorRank
  • From: Julian Stoev <stoev at SPAM-RE-MO-VER-usa.net>
  • Date: Tue, 7 Oct 1997 03:35:24 -0400
  • Organization: Seoul National University, Republic of Korea
  • Sender: owner-wri-mathgroup at wolfram.com

Dear Group,
I am not 100% sure, but I am using TensorRank as a function to determine a
rank of a matrix. 
The  folowing result is surprising for me.
The determinant<>0, but rank is defficient.
Am I wrong to use TensorRank in this way?
Thank you!


In[1]:=
cm={{0, 0, 0, 1/j}, {0, 0, -(1/j), 0}, {0, k/(i*j), 0, -(k/j^2)},
     {-(k/(i*j)), 0,
 k/j^2, 0}}
TensorRank[cm]
Det[cm]
Out[1]=
           1            1            k        k         k       k
{{0, 0, 0, -}, {0, 0, -(-), 0}, {0, ---, 0, -(--)}, {-(---), 0, --, 0}}
           j            j           i j        2       i j       2
                                              j                 j
Out[2]=
2
Out[3]=
  2
 k
-----
 2  4
i  j
--------------------------------------------------------------------------
Julian Stoev <j.h.stoev at ieee.org>       - Ph. D. Student
Intelligent Information Processing Lab. - Seoul National University, Korea
Work: 872-7283, Home: 880-4191          - http://poboxes.com/stoev
!!!!! Use REPLY-TO: or remove "SPAMREMOVER" in my address



  • Prev by Date: Matlab MathLink
  • Next by Date: Kolmogorov-Smirnov statistic
  • Previous by thread: Matlab MathLink
  • Next by thread: Re: TensorRank