Re: Simple question
- To: mathgroup@smc.vnet.net
- Subject: [mg11301] Re: [mg11239] Simple question
- From: Wouter Meeussen <eu000949@pophost.eunet.be>
- Date: Wed, 4 Mar 1998 01:40:00 -0500
hi Anderson, since you do not define the function and it's argument, I suppose you want (wisely) to operate on a functional level : in that case, here is something to play with: diff[f_,n_:1]:=Function[dum,Evaluate@D[f[dum],{dum,n}] ] intover[f_]:= Function[d,Evaluate@Integrate[f[d],d]] intover[f_,n_:1]:= Nest[intover,f,n] here is a demonstration on a "pure" or "anonymous" function (E^-#-E^#)^10& (where you could call "#" a dummy-variable: In[10]:= diff[(E^-#-E^#)^10&,3 ] Out[10]=Function[dum$, 720*(-E^(-dum$) - E^dum$)^3* (E^(-dum$) - E^dum$)^7 + 280*(-E^(-dum$) - E^dum$)*(E^(-dum$) - E^dum$)^9] as you can see, it returns a pure function too, still without argument. You can give it an argument : In[11]:= diff[(E^-#-E^#)^10&,3 ] [z] Out[11]=720*(-E^(-z) - E^z)^3*(E^(-z) - E^z)^7 + 280*(-E^(-z) - E^z)*(E^(-z) - E^z)^9 Needless to say, once you "grok" the technique, anything goes : In[12]:=Nest[intover ,1+#^2&,2] Out[12]=Function[d$, d$^2/2 + d$^4/12] In[15]:=Nest[intover ,1+#^2&,2][x] Out[15]=x^2/2 + x^4/12 In[16]:=intover[(1+#)^2 &,4][z] Out[16]=z^4/24 + z^5/60 + z^6/360 In[17]:=Function[z,Evaluate@%] Out[17]=Function[z, z^4/24 + z^5/60 + z^6/360] In[18]:=diff[%,4][x] Out[18]=1 + 2*x + x^2 enjoy, wouter. At 23:11 2-03-98 -0500, Anderson Brasil da Silva wrote: >Hi! > > I am a new user of Mathematica and I am having troubles trying to >create a function FUNC[f,n,p] that returns the value of the n-th >derivative of f in the point p. My main problem is that I have no idea >about how to create a function that takes other functions as >parameters. Besides this problem, when I use Dt[f,{x,n}] I can get the >derivative, but I can't get the value of this in any specific point (if >I try something like (Dt[f,{x,n}])[0] it doesn't work). > Can somebody help me, please? > > Thanks in advance, > > Anderson Brasil > anderbrasil@ax.ibase.org.br > > >------------------------------------------------------------------------ >"The whole problem with the world is that fools and fanatics are always >so certain of themselves, but wiser people so full of doubts." >(Bertrand Russell) >------------------------------------------------------------------------ > > > > > Dr. Wouter L. J. MEEUSSEN w.meeussen.vdmcc@vandemoortele.be eu000949@pophost.eunet.be